Open Journal Systems

PUBLIC
KNOW
LEDGE

Version 2.1

Technical Reference

Revision 3

SIMON FRASER
UNIVERSITY

library

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc—
nd/2.0/ca/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California

SOME RIEHTE RESERVED

http://creativecommons.org/licenses/by-nc-nd/2.0/ca/
http://creativecommons.org/licenses/by-nc-nd/2.0/ca/

PUBLIC .
KNOW universitvlibrary
Table of Contents
sV ugoTa L8 et uTo) s PO U URRPRPN 3
About the Public KNOWIedZe PTOJeCt.......ccvvviuivireiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeesannnees 3
About Open JOUINal SYStEIMS.uuuuuuuiiiiiiierieeeeeeeeeeeee e et e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeaea 3
AboUt This DOCUMENT.uuuuiieeieeeeeiiiiieeeeeeeeeeieeeeeeeeeeeteeeeeeeereaanraeeeeeessssanneeeas 4
COMVEINELIONS cettuueteetiiiiereeeettieeeeetuuaaeereerennseeerensneeessssnseeessssnseeessssnnesessnsnnseeees 4
LTdd 0T aT0] (oo LT 4
DESIZN OVEIVIEW .. .eiiuiiieiiiiieeeetitieeeettiieeeeetaieeetusaeeetasaneeetenaesessnnnseersnnnesessnnnseesnnns S
COMVEIIEIONIS . cevvuueteeriieeeeetuieeeeeeueeeeeeetueneeeereennaseesesnnsssesssnnsessssnsnsessssnsssessssnnseenes 5
€SS a1 | PPN 5
USET INEEITACE. . .euveiteieiitiiceceeeeeeee eeeeeeeeeeeeeeeeeeeeesesasesanaeenees 5
|20 51 O T (TSR 5
DALADASE.uuuueeiiiiiiiiiiiiitt e ——— 6
SO CUTIEY ettt ettt e ettt e e e e e et ettba e e e e e eettasaae e e eeeeetaanaaeeeeeaaaes 6
s L oY 1§ Uatu (o] s DR 7
FIlE STIUCTUTE. ...ceiiiieitieeee ettt e et eee e e e e e e e et aa e eeeeeeeeesaaeaannaeeeeeeeeessnnnnns 8
Request HANAIING.....ccoeiiiiiiiiiiiieieecteee ettt e e e e e 10
A NOLE ON URLS.ceuiiiiiiiiiiiiiieeeiie ettt e eete e et e e e e eae e enaeenns 10
Request Handling EXample........cccoiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeieeeeeeeseeveeeeeeeeeaeens 10
Locating Request Handling Code...........cceeeeiiiiiiiiiiiiiiiicciccecceeeeeeeeeeeeeeveeavaaee 11
Database DeSIZN.....cciiiiiiiiiiiiiiieieeeee e 13
(O T 0SS (S 1= 1 ¢ U PRRRPRRRPR 17
Class HIiTarChyuuuu e e e e e e ee e e e e e e eee e 17
PaZE ClaSSES. . ieeuiiiiitieeee e ettt e e e e ettt e e e e e e ettt et e e e e e e e rreteeeeeeeeas 22
55T 0T 11 Uatu (o) s OO UUPPUUPPPUPPPPRR 22
ACHION ClASSES..ceiiuiruiieeeeeeeiiiiiieee e e e eeete ittt ieeeeeeeeeaatta e eeeeeesarsnnnnaeeeeessessnnnnaaees 23
IMOAEL ClaASSES. . uceeeeeeeeeeiieeieiiiee et s e e s e e e e e e aeeeaeaaaaaaaaanns 24
Data Access ObJects (DAOS) ...uuuuueeiiieiiiiiieeeeeeeiiieeeeeeetrtaeeeeeeeeeanneeeeeensnnaaaaeens 24
SUPPOTE ClASSES...uuueiiiiieieeeeeeeiitteee et e e ettt e e e e e e ettt e e eeeeeesesassbereeeeeseeeennnns 25
Sending Email MeSSaZes......ceeeiiiiiiiiiiiiiiieeeeeieeeeiiiiiieeeeeeeeeeeeeesnnneeeesaaeesnens 25
INterNatioNaliZation.ccceeeeiiiiiieeeeeeeeeeeeicee e e e e e ee e e e e e e eeeeraaaeeeeeeeeeanenans 26
FOTIMIS ettt e et e e et e e eae e e eaa e e eaa e eeaaees 27
CONfIGUIALION. ..eeeiieiiietieeeciiiieeee et e e e e e e e e e e e e e e eeeeeeseeeessennssnnseeeaeees 28
[OF0) Sl O] F= T 1 SRR 28
Database SUPPOTT.....ciiiieiiiiiiiieeeeeeeeieiiieeeeeeeeerteeeeeeeeeeaasnnseeeeerrennnaeseeenessnnns 29
File Management........ccceeiiiiiiiiiiiiiieeieeee e e eiieieeeee e e e e e e e e eieeeeeeeeeee e e e e 30
Scheduled Tasks.......uuuuueuuiiiiiiieeeeeeeeee e e e e e e e e e e e e aeeas 30
SO CUTIEY . eee ettt ettt e e e ettt e e e e e e et tbtaa e e eeeeeetanaa e e eeeaeaeannaaaeeeeenens 31

PUBLIC H
KNOW universitylibrary
SeSSION MaANAZEIMIENL.uiiiieieieiiiieeeetiieeeeetiieeeettaieeeeetaneeeetannseeetnnnseeesnnnnns 31
TEMPIAte SUPPOTT..ccetiiiiiiiiiiiiiiiiiiiirerrse e sre e e e e e e e e e eeeeeeeeeeeeeaeaeeeeeeeesseeannes 32
PAZINE ClaSSES. .. uuuieeeieeeeieeeieiieieiieeeeeeeeettrrea e essseeaeeeeeeeeeaeeaaaeeeseeeessesssens 32
PlUGITIS ¢ eeeeeeeeeie e 33
(@00) 1000010) 0 T = 1] TP 33
Sending EMailS.......uuuueeeeiiiiiiiiiiiiieee e ee e e e e e eeenes 33
Database Interaction With DAOS......ccoeeeeeiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee s 34
USET INTEITACE. c.eiiiiiiiiiieie ettt e e e e e e e ettt te e e e e s e s s asnneaes 35
VATTADIES. ..ttt e aeeeeeaeaaeens 35
FUNctions & MOAIfierS....uuuuuuuuiiiieeeeeeeeeeeeeeeeeceeeeeiree e ee e e e e e e e e e eeeeeeeeeaaees 37
PIUGINIS. ..ttt eee e e e e e et e eaa e eeeeeeeeeeaaan e aeaeeeeeaaananaaeaaaanenes 39
ODJECLS & ClASSES....uvttiiieeieeiaiiiiiteteeeee et e e ettt e e e ee e e e e e beeeeeeeeeeeeeeaeannns 40
RF: 1001 0) (S 2 11 L4 s DS RRRR 40
LOAdET StUD...cceieiiiiiiiiicceeeeeeeee e e e e e e e e e e aeeas 41
PIUZIN ODJECE..cciiiiiiiiiiieieeeeeeeeeeeeeeeeeee s e e e e e e e e e e e e e e e e aeaaaaaaaaaens 41
Registration FUNCHON.uuviiiiiiiiiiiiiiiiiiieieieieeeeeeeeeeeeeee ettt ee e e eeeeeeees 42
Hook Registration and Callback.............cccceeiiriiiiiiiiiiiiiiiieeeeeeeeeeee e 42
Plugin Management........ccuuuuuuuueeeeeeeeeererienieeeeeeeeeernsnnneeeeseeeesesssnnnaseessseesssnnnnns 44
Additional Plugin Functionality..........coeevveiiiiiiiiiiiiiiiiiiiiicceeeee e eeeeeeeeeeeeeneeans 45
HOOK LiSt..evttttiieeeieeeiiiiiiiiieette e et e e e e ettt et e e e e e e e e s s s sbbatebe et eeeeaeeeeesasssnnnnns 46
Translating OJS.....ccooviiiiiiiiiiii e 78
Special TRANKS.......cciiiiiiiiiii e ———— 79
Obtaining More INformation..... eueiiiiieiiieieeeaeaneee 80

Page 2

PUBLIC SIMON FRASER | 3
KNOW umvsnsn'vllbl'ary
Introduction

About the Public Knowledge Project

The Public Knowledge Project (http://pkp.sfu.ca) is dedicated to exploring
whether and how new technologies can be used to improve the professional and
public value of scholarly research. Bringing together scholars, in a number of
fields, as well as research librarians, it is investigating the social, economic, and
technical issues entailed in the use of online infrastructure and knowledge
management strategies to improve both the scholarly quality and public
accessibility and coherence of this body of knowledge in a sustainable and
globally accessible form. The project seeks to integrate emerging standards for
digital library access and document preservation, such as Open Archives and
InterPARES, as well as for such areas as topical maps and doctoral dissertations.

About Open Journal Systems

Open Journal Systems (OJS) is a journal management and publishing system that
has been developed by the Public Knowledge Project through its federally funded
efforts to expand and improve access to research. OJS assists with every stage of
the refereed publishing process, from submissions through to online publication
and indexing. Through its management systems, its finely grained indexing of
research, and the context it provides for research, OJS seeks to improve both the
scholarly and public quality of referred research. OJS is open source software
made freely available to journals worldwide for the purpose of making open
access publishing a viable option for more journals, as open access can increase a
journal's readership as well as its contribution to the public good on a global
scale.

Version 2.x represents a complete rebuild and rewrite of Open Journal Systems
1.x, based on two years of working with the editors of the 250 journals using OJS
in whole or in part around the world. With the launch of OJS v2.0, the Public
Knowledge Project is moving its open source software development (including
Open Conference Systems and PKP Harvester) to Simon Fraser University Library,
in a partnership that also includes the Canadian Center for Studies in Publishing
at SFU.

User documentation for OJS 2.x can be found on the Internet at

Page 3

http://pkp.sfu.ca/

PUBLIC SIMON FRASER | 3
KNOW umvsnsn'vllbl'ary

http://pkp.sfu.ca/ojs/demo/present/index.php/index/help; a
demonstration site is available at http://pkp.sfu.ca/demo/present.

About This Document

Conventions

e Code samples, filenames, URLs, and class names are presented in a courier
typeface;

® Square braces are used in code samples, filenames, URLs, and class names to
indicate a sample value: for example, [anything]Handler.inc.php can be
interpreted as any file name ending in Handler.inc.php

® The URL http://www.mylibrary.com used in many examples is intended
as a fictional illustration only.

Technologies

Open Journal Systems 2.x is written in object-oriented PHP
(http://www.php.net) using the Smarty template system for user interface
abstraction (http://smarty.php.net). Data is stored in a SQL database, with
database calls abstracted via the ADODB Database Abstraction library
(http://adodb.sourceforge.net).

Recommended server configurations:

PHP support (4.2.x or later)

MySQL (3.23.23 or later) or PostgreSQL (7.1 or later)
Apache (1.3.2x or later) or Apache 2 (2.0.4x or later)

or Microsoft IIS 6 (PHP 5.x required)

Linux, BSD, Solaris, Mac OS X, Windows operating systems

Other versions or platforms may work but are not supported and may not have
been tested. We welcome feedback from users who have successfully run OJS on
platforms not listed above.

Page 4

http://adodb.sourceforge.net/
http://smarty.php.net/
http://www.php.net/
http://www.mylibrary.com/
http://pkp.sfu.ca/demo/present
http://pkp.sfu.ca/ojs/demo/present/index.php/index/help

PUBLIC

UBLIC SIMON FRASER I =
KNOW umvsnsn'vllbl'ary

Design Overview

Conventions

General
® Directories are named using the lowerCamelCase capitalization convention;

® Because OJS 2.x will be translated into multiple languages, no assumptions
should be made about word orderings. Any language-specific strings should
be defined in the appropriate locale files, making use of variable
replacement as necessary.

User Interface

® Layout should be separated from content using Cascading Style Sheets
(CSS);

e Smarty templates should be valid XHTML 1.0 Transitional (see
http://validator.w3.org/).

PHP Code

® Wherever possible, global variables and functions outside of classes should
be avoided;

e Symbolic constants, mapped to integers using the PHP define function, are
preferred to numeric or string constants;

e Filenames should match class names; for example, the
SectionEditorAction class is in the file SectionEditorAction.inc.php;

e Class names and variables should be capitalized as follows: Class names use
CamelCase, and instances use lowerCamelCase. For example, instances of a
class MyClass could be called $myClass;

® Whenever possible and logical, the variable name should match the class
name: For example, $myClass is preferred to an arbitrary name like $x;

e Class names and source code filenames should be descriptive and unique;

® Output should be restricted as much as possible to Smarty templates. A valid
situation in which PHP code should output a response is when HTTP
headers are necessary;

® To increase performance and decrease server load, import (...) calls

Page 5

http://validator.w3.org/

PUBLIC SIMON FRASER

i u
KNOW umvsnsn'vllbl'ary

should be kept as localized as possible;

® References should be used with care, particularly as they do not behave
consistently across different releases of PHP. For increased performance,
constructors should be generally called by reference, and references should
be used whenever possible when passing objects.

Database

® SQL tables are named in the plural (e.g. users, journals) and table names
are lower case;

® SQL database feature requirements should be kept minimal to promote
broad compatibility. For example, since databases handle date arithmetic
incompatibly, it is performed in the PHP code rather than at the database
level.

e All SQL schema information should be maintained in
dbscripts/xml/ojs_schema.xml (except plugin schema, described later).

Security

e The validity of user requests is checked both at the User Interface level and
in the associated Page class. For example, if a user is not allowed to click on
a particular button, it will be disabled in HTML by the Smarty template. If
the user attempts to circumvent this and submits the button click anyway,
the Page class receiving the form or request will ensure that it is ignored.

® Wherever possible, use the Smarty template engine's string escape features
to ensure that HTML exploits and bugs are avoided and special characters
are displayed properly. Only the Journal Manager and Site Manager should
be able to input unchecked HTML, and only in certain fields (such as the
multiline fields in Journal Settings). For example, when displaying a
username, always use the following: {$user->getUsername () |escape}

e Limited HTML support can be provided using the Smarty

strip_unsafe_html modifier, e.g. {SmyVariable|
strip_unsafe_html}

Page 6

PUBLIC SIMON FRASER I 3
KNOW umvsnsn'vllbl'ary
Introduction

The design of Open Journal Systems 2.x is heavily structured for maintainability,
flexibility and robustness. For this reason it may seem complex when first
approached. Those familiar with Sun's Enterprise Java Beans technology or the
Model-View-Controller (MVC) pattern will note many similarities.

As in a MVC structure, data storage and representation, user interface
presentation, and control are separated into different layers. The major
categories, roughly ordered from “front-end” to “back-end,” follow:

e Smarty templates, which are responsible for assembling HTML pages to
display to users;

e Page classes, which receive requests from users' web browsers, delegate any
required processing to various other classes, and call up the appropriate
Smarty template to generate a response;

® Action classes, which are used by the Page classes to perform non-trivial
processing of user requests;

® Model classes, which implement PHP objects representing the system's
various entities, such as Users, Articles, and Journals;

e Data Access Objects (DAOs), which generally provide (amongst others)
update, create, and delete functions for their associated Model classes, are
responsible for all database interaction;

e Support classes, which provide core functionalities, miscellaneous common
classes and functions, etc.

As the system makes use of inheritance and has consistent class naming
conventions, it is generally easy to tell what category a particular class falls into.
For example, a Data Access Object class always inherits from the pDaAO class, has a
class name of the form [Something]DAO, and has a filename of the form
[Something]DAO. inc.php.

Page 7

PUBLIC SIMON FRASER I 3
KNOW UNIVERSITYIlbrary

The following diagram illustrates the various components and their interactions.

View & Controller

777

| |
S S C Requests
#| 1 Support Classes
! | ! ST T T T T T T T T T |
E i i i i i ! index.php | Responds
St | | | | | | |
0 Lo [Lo wrappers !
2 | | i i i [BP 7777777 |
g I | : | et)
5 i ! : i Requests v
~ | ! ! |
L;j b b Remote Browser
! | | |
} | ___ I }
| |
| |

File Structure

The following files are in the root directory of a typical OJS 2.x installation:

File/Directory Description

cache

Directory containing cached information

classes

Directory containing most of the OJS 2.x PHP code: Model
classes, Data Access Objects (DAOs), core classes, etc

Page 8

PUBLIC SIMON FRASER I =

KNOW % lib ry

KNOW universitYl10lA
File/Directory Description

config.TEMPLAIE.inc.phe Gample configuration file

config.inc.php System-wide configuration file

dbscripts Directory containing XML database schemas and data

such as email templates

docs

Directory containing system documentation

help Directory containing system help XML documents

includes

Directory containing system bootstrapping PHP code:
class loading, miscellaneous global functions

index.php All requests are processed through this PHP script, whose
task it is to invoke the appropriate code elsewhere in the
system

is Directory containing client-side javascript files
1ib Directory containing ADODB (database abstraction) and
Smarty (template system) classes

locale

Directory containing locale data and caches

pages Directory containing Page classes

plugins Directory containing additional plugins

public Directory containing files to be made available to remote
browsers; for example, journal logos are placed here by
the system

registry

Directory containing various XML data required by the
system: scheduled tasks, available locale names, default
journal settings, words to avoid when indexing content.

rt

Directory containing XML data used by the Reading Tools
styles Directory containing CSS stylesheets used by the system

templates Directory containing all Smarty templates

tools

Directory containing tools to help maintain the system:
unused locale key finder, scheduled task wrapper, SQL
generator, etc.

Page 9

PUBLIC

KNOW ‘=7 SIMON FRASER

Aaay umvsnsm!libl'ary

Request Handling

The way the system handles a request from a remote browser is somewhat
confusing if the code is examined directly, because of the use of stub files whose
sole purpose is to call on the correct PHP class. For example, although the
standard index.php file appears in many locations, it almost never performs any
actual work on its own.

Instead, work is delegated to the appropriate Page classes, each of which is a
subclass of the Handler class and resides in the pages directory of the source
tree.

A Note on URLs

Generally, URLs into OJS make use of the PATH_INFO variable. For example,
examine the following (fictional) URL:

http://www.mylibrarv.com/ojs2/index.php/myjournal /user/profile

The PHP script invoked to handle this request, index.php, appears halfway
through the URL. The portion of the URL appearing after this is passed to
index.php via a CGI variable called PATH_INFO.

Some server configurations do not properly handle requests like this, which most
often results in a 404 error when processing this sort of URL. If the server cannot
be re-configured to properly handle these requests, OJS can be configured to use
an alternate method of generating URLs. See the disable_path_info option in
config.inc.php. When this method is used, OJS will generate URLs unlike those

used as examples in this document. For example, the URL above would appear as:
http://www.mylibrary.com/ojs2/index.php?journal=myjournalég
page=useré&op=profile

Request Handling Example

Predictably, delegation of request handling occurs based on the request URL. A

typical URL for a journal is:
http: www.mylibrarv.com/ojs2/index.php/myjournal/user/profile

Page 10

http://www.mylibrary.com/ojs2/index.php/myjournal/user/profile
http://www.mylibrary.com/ojs2/index.php/myjournal/user/profile
http://www.mylibrary.com/ojs2/index.php/myjournal/user/profile
http://www.mylibrary.com/ojs2/index.php?journal=myjournal&
http://www.mylibrary.com/ojs2/index.php/myjournal/user/profile

PUBLIC

KNOW ‘=7 SIMON FRASER

Aaay umvsnsm!libl'ary

The following paragraphs describe in a basic fashion how the system handles a
request for the above URL. It may be useful to follow the source code at each step
for a more comprehensive understanding of the process.

In this example, http://www.mylibrary.com/ois2/index.php is the path to
and filename of the root index.php file in the source tree. All requests pass
through this PHP script, whose task is to ensure that the system is properly
configured and to pass control to the appropriate place.

After index.php, there are several more components to the URL. The function of
the first two (in this case, myjournal and user) is predefined; if others follow,
they serve as parameters to the appropriate handler function.

An Open Journal Systems 2.x installation can host multiple journals; myjournal
identifies the particular journal this request refers to. There are several situations
in which no particular journal is being referred to, such as when a user is viewing
the Site Administration pages. In this case, this field takes a value of index.

The next field in this example URL identifies the particular Page class that will be
used to process this request. In this example, the system would handle a request
for the above URL by attempting to load the file pages/user/index.php; a brief
glance at that file indicates that it simply defines a constant identifying the Page
class name (in this case, UserHandler) and loads the PHP file defining that class.

The last field, profile in this case, now comes into play. It identifies the
particular function of the Page class that will be called to handle the request. In
the above example, this is the profile method of the User class (defined in the
pages/user/UserHandler. inc.php file).

Locating Request Handling Code

Once the framework responsible for dispatching requests is understood, it is fairly
easy to locate the code responsible for performing a certain task in order to

modify or extend it. The code that delegates control to the appropriate classes has
been written with extensibility in mind; that is, it should rarely need modification.

Page 11

http://www.mylibrary.com/ojs2/index.php

PUBLIC

UBLIC 25 SIMON FRASER | 3
KNOW umvsnsn'vllbl'ary

In order to find the code that handles a specific request, follow these steps:

e Find the name of the Page class in the request URL. This is the second field
after index.php; for example, in the following URL:

http://www.mylibrarv.com/index.php/myvjournal /user/profile

the name of the Page class is UserHandler. (Page classes always end with
Handler. Also note the differences in capitalization; in the URL,
lowerCamelCase is used; class names are always CamelCase.)

e Find the source code for this Page class in the pages directory of the source
tree. In the above example, the source code is in
pages/user/UserHandler.inc.php.

® Determine which function is being called by examining the URL. This is the
third field after index.php, or, in this case, profile.

® Therefore, the handling code for this request is in the file
pages/user/UserHandler.inc.php, in the function profile.

Page 12

http://www.mylibrary.com/index.php/myjournal/user/profile

PUBLIC
KNOW
LEDGE

Database Design

SIMON FRASER I =
umvsnsn'vllbl'ary

The Open Journal Systems 2.x database design is flexible, comprehensive, and
consistent; however, owing to the number of features and options the system
offers, it is also fairly broad in its scope.

For further information, please see dbscripts/xml/ojs_schema.xml.

Table Name

Primary Key

Description

access_keys

article_authors

article_comments

access_key_id
author_id

comment_id

Stores keys for one-click reviewer access
Stores article authors on a per-article basis

Stores comments between members of the
article editing process; note that this is not
used for reader comments

article email log |log_id Stores log entries describing emails that
have been sent with regard to a specific
article

article_event_log log_id

article_files

file_id, revision

Stores log entries describing events that
have taken place with regard to a specific
article

Stores information regarding the various
files (e.g. images, galleys, supplementary
files) associated with a particular article

article_galleys

article_html_galley_

images

article_notes

article_search_

object_keywords

article_search_

galley_id

galley_id,

file_id

note_id

object_id, pos

object_id

Stores information about a particular layout
(or “galley™) associated with a particular
article

Associates images with galleys stored in the
article_galleys table

Stores notes made for tracking purposes
about a particular article by the editor(s)

Provides an index associating keywords, by
position, with search objects they appear in

Lists search “objects”, or entities that can be

Page 13

PUBLIC
KNOW
LEDGE

Table Name

objects

article_search_

keyword_list

article_

supplementary_files

Primary Key

keyword_id

supp_id

ez library

Description
searched.

Stores all keywords appearing in items the
system has indexed

Stores information about supplementary
files belonging to a particular article

articles

article_id

Stores information on every submission in
the system

comments

copyed_assignments

currencies

custom_

section_orders
edit_assignments

edit_decisions

email_templates

email_templates_

data

email_ templates_

default

email_templates_

default_data

group_memberships

groups

issues

comment_id

copyed_id

currency_id

issue_id,

section_id

edit_id

edit_decision_id

email_id

email_id,
journal_id

locale,

email_id

email_id,
journal_id

locale,

user_id, group_id

group_id

issue_id

Stores reader comments about articles

Stores information about copy editor
assignments

Stores information about currencies
available to the subscription subsystem

Stores information about issue-specific
ordering of journal sections

Stores information on editing assignments

Stores editor decisions with regard to a
particular article

Stores a list of email templates that have
been modified by the journal manager

Stores locale-specific text for emails in
email_templates that have been modified
by the journal manager

Stores a list of default email templates
shipped with this version of OJS 2.x

Stores locale-specific text for emails in
email_templates_default that shipped
with this version of OJS 2.x

Stores membership information for groups

Stores information about groups (a.k.a.
custom masthead)

Stores information about particular issues of

Page 14

PUBLIC
KNOW
LEDGE

Table Name

journal_settings

journals

layouted_assignments

notification_status

Primary Key

journal_id,
setting_name

journal_id

layouted_id

journal_id,
user_id

ez library

Description
hosted journals

Provides a means of storing arbitrary-type
settings for each journal

Stores a list of hosted journals and a small
amount of metadata. (Most metadata is
stored in journal_settings)

Stores information about layout editor
assignments

If a user wishes to be notified about a
particular journal, they are associated with
the journal ID in this table

oai_resumption_

tokens

token

Contains resumption tokens for the OAI
protocol interface

plugin_settings

proof_assignments

published_articles

review_assignments

review_rounds

roles

plugin_name,
journal_id,
setting_name

proof_id

pub_id

review_id

article_id, round

journal_id,

role_id, user_id

Stores settings for individual plugins

Stores information about proofreading
assignments

When an article is published, an entry in
this table is created to augment information
in the articles table

Stores information about reviewer
assignments

Associates an article ID with a review file
revision for each round of review

Defines what roles (manager, editor,
reviewer, ...) users have within particular
journals

rt_contexts

context_id

Reading Tools contexts

rt_searches

rt_settings

rt_versions

search_id

journal_id

version_id

Reading Tools searches
Reading Tools settings for each journal

Reading Tool versions

Page 15

PUBLIC
KNOW
LEDGE

Table Name

scheduled_tasks

section_editors

Primary Key

class_name

journal_id,
section_id,
user_id

ez library

Description

On systems supporting scheduled tasks, this
table is used by the task execution script to
store information about when tasks were
last performed

Associates section editors with sections of
journals that they edit

sections section_id Defines sections within which journals can
publish articles

sessions session_id Stores session information for the users who
are currently using the system

site title Stores site-wide configuration information

subscription_types type_id

subscriptions

temporary_files

users

subscription_id

file_id

user_id

Defines types of subscriptions made
available by the subscription subsystem

Describes subscriptions “owned” by the
system's users

Used for situations in which a file must be
temporarily stored on the server between
user requests

Stores information about every user
registered with the system

versions

major, minor,
revision, build

Stores information about the current
deployment of OJS 2.x

Page 16

PUBLIC
KNOW
LEDGE

Class Reference

Class Hierarchy

[t
'u\ "1

SIMON FRASER
UNIVERSITY

library

All classes and subclasses of the major OJS 2.x objects are listed below.
Indentation indicates inheritance; for example, AuthorAction inherits from

Action.

AccessKeyManager

Action
AuthorAction
CopyeditorAction
LayoutEditorAction
ProofreaderAction
ReviewerAction
SectionEditorAction

EditorAction

ArticleLog

ArticleSearch

ArticleSearchIndex

CacheManager

CommandLineTool
dbXMLtoSQL
importExport
installTool
migrate
rebuildSearchIndex
runScheduledTasks
upgradeTool

Config

ConfigParser

Core

DAO
AccessKeyDAO
ArticleCommentDAO
ArticleDAO
ArticleEmailLogDAO
ArticleEventLogDAO
ArticleFileDAO
ArticleGalleyDAO
ArticleNoteDAO
ArticleSearchDAO
AuthSourceDAO
AuthorDAO
AuthorSubmissionDAO
CommentDAO
CopyAssignmentDAO
CopyeditorSubmissionDAO
CountryDAO
CurrencyDAO
EditAssignmentDAO
EditorSubmissionDAO
EmailTemplateDAO
GroupDAO
GroupMember shipDAO

Page 17

PUBLIC
KNOW

IssueDAO
JournalDAO
JournalSettingsDAO
JournalStatisticsDAO
LayoutAssignmentDAO
LayoutEditorSubmissionDAO
NotificationStatusDAO
OAIDAO
PluginSettingsDAO
ProofAssignmentDAO
ProofreaderSubmissionDAO
PublishedArticleDAO
RTDAO
ReviewAssignmentDAO
ReviewerSubmissionDAO
RoleDAO
ScheduledTaskDAO
SectionDAO
SectionEditorSubmissionDAO
SectionEditorsDAO
SessionDAO
SiteDAO
SubscriptionDAO
SubscriptionTypeDAO
SuppFileDAO
TemporaryFileDAO
UserDAO
VersionDAO
DAORegistry
DBConnection
DBDataXMLParser
DBResultRange
DataObject
AccessKey
Article
AuthorSubmission
CopyeditorSubmission
LayoutEditorSubmission
ProofreaderSubmission
PublishedArticle
ReviewerSubmission
SectionEditorSubmission
EditorSubmission
ArticleComment
ArticleEmailLogEntry
ArticleEventLogEntry
ArticleFile
ArticleGalley
ArticleHTMLGalley
ArticleNote
SuppFile
AuthSource
Author
BaseEmailTemplate
EmailTemplate
LocaleEmailTemplate
Comment
CopyAssignment
Currency
EditAssignment
Group
GroupMembership
HelpToc
HelpTopic

SIMON FRASER
UNIVERSITY

library

Page 18

)

PUBLIC SIMON FRASER | 3
KNOW UNIVERSITYIlbrary

HelpTopicSection
Issue
Journal
LayoutAssignment
Mail
MailTemplate
ArticleMailTemplate
ProofAssignment
ReviewAssignment
Role
Section
Site
Subscription
SubscriptionType
TemporaryFile
User
ImportedUser
Version
EruditExportDom
FileManager
ArticleFileManager
PublicFileManager
TemporaryFileManager
FileWrapper
FTPFileWrapper
HTTPFileWrapper
Form
ArticleGalleyForm
AuthSourceSettingsForm
AuthorSubmitForm
AuthorSubmitSteplForm
AuthorSubmitStep2Form
AuthorSubmitStep3Form
AuthorSubmitStep4Form
AuthorSubmitStep5Form
AuthorSubmitSuppFileForm
ChangePasswordForm
CommentForm
CopyeditCommentForm
EditorDecisionCommentForm
LayoutCommentForm
PeerReviewCommentForm
ProofreadCommentForm
CommentForm
CopyeditCommentForm
EditorDecisionCommentForm
LayoutCommentForm
PeerReviewCommentForm
ProofreadCommentForm
ContextForm
CreateReviewerForm
EditCommentForm
EmailTemplateForm
GoogleScholarSettingsForm
GroupForm
ImportOJS1Form
InstallForm
IssueForm
JournalSetupForm
JournalSetupSteplForm
JournalSetupStep2Form
JournalSetupStep3Form
JournalSetupStep4Form
JournalSetupStepS5Form

Page 19

PUBLIC
KNOW

JournalSiteSettingsForm
LanguageSettingsForm
MetadataForm
ProfileForm
RegistrationForm
SearchForm
SectionForm
SiteSettingsForm
SubscriptionForm
SubscriptionTypeForm
SuppFileForm
UpgradeForm
UserManagementForm
VersionForm
FormError
FormValidator
FormValidatorArray
FormValidatorCustom
FormValidatorInSet
FormValidatorLength
FormValidatorRegExp
FormValidatorAlphaNum
FormValidatorEmail
GenericCache
FileCache
MemcacheCache
Handler
AboutHandler
AdminHandler
AdminFunctionsHandler
AdminJournalHandler
AdminLanguagesHandler
AdminSettingsHandler
AuthSourcesHandler
ArticleHandler
RTHandler
AuthorHandler
SubmissionCommentsHandler
SubmitHandler
TrackSubmissionHandler
CommentHandler
CopyeditorHandler
SubmissionCommentsHandler
SubmissionCopyeditHandler
GatewayHandler
HelpHandler
IndexHandler
InformationHandler
InstallHandler
IssueHandler
LayoutEditorHandler
SubmissionCommentsHandler
SubmissionLayoutHandler
LoginHandler
ManagerHandler
EmailHandler
FilesHandler
GroupHandler
ImportExportHandler
JournallanguagesHandler
PeopleHandler
PluginHandler
SectionHandler
SetupHandler

SIMON FRASER
UNIVERSITY

library

Page 20

)

PUBLIC SIMON FRASER | 3
KNOW UNIVERSITYIlbrary

StatisticsHandler
SubscriptionHandler
OAIHandler
ProofreaderHandler
SubmissionCommentsHandler
SubmissionProofreadHandler
RTAdminHandler
RTContextHandler
RTSearchHandler
RTSetupHandler
RTVersionHandler
ReviewerHandler
SubmissionCommentsHandler
SubmissionReviewHandler
SearchHandler
SectionEditorHandler
EditorHandler
IssueManagementHandler
SubmissionCommentsHandler
SubmissionEditHandler
SubscriptionManagerHandler
UserHandler
EmailHandler
ProfileHandler
RegistrationHandler
Help
HookRegistry
Import0OJsl
Installer
Install
Upgrade
IssueAction
ItemIterator
ArraylItemIterator
DAOResultFactory
DBRowIterator
JournalReportIterator
VirtualArrayIterator
Locale
NativeExportDom
NativeImportDom
OAT
JournalOAI
OAIConfig
OAIIdentifier
OAIRecord
OAIMetadataFormat
OAIMetadataFormat_DC
OAIMetadataFormat_MARC
OAIMetadataFormat_MARC21
OAIMetadataFormat_RFC1807
OAIRepository
OAIResumptionToken
OAISet
Plugin
AuthPlugin
LDAPAuthPlugin
GatewayPlugin
GoogleScholarPlugin
GenericPlugin
ImportExportPlugin
EruditExportPlugin
NativeImportExportPlugin
SampleImportExportPlugin

Page 21

PUBLIC SIMON FRASER | 3
KNOW umvsnsn'vllbl'ary

UserImportExportPlugin
PluginRegistry
RT
JournalRT
RTAdmin
JournalRTAdmin
RTContext
RTSearch
RTVersion
RTXMLParser
Registry
Request
SMTPMailer
SQLParser
ScheduledTask
ReviewReminder
SearchFileParser
SearchHTMLParser
SearchHelperParser
SessionManager
String
TemplateManager
Transcoder
UserExportDom
UserXMLParser
Validation
VersionCheck
XMLCustomWriter
XMLDAO
HelpTocDAO
HelpTopicDAO
XMLNode
XMLParser
XMLParserHandler
XMLParserDOMHandler

Page Classes

Introduction

Pages classes receive requests from users' web browsers, delegate any required
processing to various other classes, and call up the appropriate Smarty template
to generate a response (if necessary). All page classes are located in the pages
directory, and each of them must extend the Handler class (see
classes/core/Handler.inc.php).

Additionally, page classes are responsible for ensuring that user requests are valid
and any authentication requirements are met. As much as possible, user-
submitted form parameters and URL parameters should be handled in Page
classes and not elsewhere, unless a Form class is being used to handle parameters.

An easy way to become acquainted with the tasks a Page class must fulfill is to

Page 22

PUBLIC

UBLIC SIMON FRASER I =
KNOW umvsnsn'vllbl'ary

examine a typical one. The file pages/about /AboutHandler.inc.php contains
the code implementing the class AboutHandler, which handles requests such as
http://www.mylibrary.com/ojs2/myjournal/about/siteMap. This is a fairly
simple Page class responsible for fetching and displaying various metadata about
the journal and site being viewed.

Each Page class implements a number of functions that can be called by the user
by addressing the appropriate Page class and function in the request URL. (See
the section titled “Request Handling” for more information on the mapping
between URLs and page classes.)

Often, Page classes handle requests based on the role the user is playing. For
example, there is a Page class called AuthorHandler (in the directory
pages/author/AuthorHandler.inc.php) that delegates processing of the
various tasks an author might perform. Similarly, there are classes called
LayoutEditorHandler, ManagerHandler, and so forth.

The number of tasks a Page handler must perform can frequently be considerable.
For example, if all requests for Section Editor functions were handled directly by
the sectionEditorHandler class, it would be extremely large and difficult to
maintain. Instead, functions are further subdivided into several other classes
(such as submissionEditHandler and SubmissionCommentsHandler), with
SectionEditorHandler itself remaining just to invoke the specific subclass.

Action Classes

Action Classes are used by the Page classes to perform non-trivial processing of
user requests. For example, the SectionEditorAction class is invoked by the
SectionEditorHandler class or its subclasses (see Page Classes) to perform as
much of the work as can be offloaded easily. This leaves the Page class to do its
job — validation of user requests, authentication, and template setup — and keeps
the actual processing separate.

The Action classes can be found in

classes/submission/[actionName]/ [ActionName]Action.inc.php; for
example, the Section Editor action class is
classes/submission/sectionEditor/SectionEditorAction.inc.php.

Page 23

http://www.mylibrary.com/ojs2/myjournal/about/siteMap

PUBLIC SIMON FRASER | 3
KNOW umvsnsn'vllbl'ary

The most common sorts of tasks an Action class will perform are sending emails,
modifying database records (via the Model and DAO classes), and handling
uploaded files (once again via the appropriate classes). Returning to the
Model/View/Controller (MVC) architecture, Action classes perform the more
interface-agnostic functions of the Controller component.

Each of the more complex roles, such as Author, Section Editor, and Proofreader,
has its own Action class. Another way to consider the function of an Action class
is to look at it from a role-based perspective, ignoring the user interface: any
major processing that an Author should be able to perform should be
implemented in the Authoraction class. The user interface then calls these
functions as necessary.

Model Classes

The Model classes are PHP classes responsible only for representing database
entities in memory. For example, the articles table stores article information in
the database; there is a corresponding Model class called article (see
classes/article/Article.inc.php) and DAO class called ArticleDao (see
the section called Data Access Objects [DAOs]).

Methods provided by Model classes are almost exclusively get/set methods to
retrieve and store information, such as the getTitle () and setTitle ($title)
methods of the article class. Model classes are not responsible for database

storage or updates; this is accomplished by the associated DAO class.

All Model classes extend the DataObject class.

Data Access Objects (DAOSs)

Data Access Objects are used to retrieve data from the database in the form of
Model classes, to update the database given a modified Model class, or to delete
rows from the database.

Each Model class has an associated Data Access Object. For example, the Article

Page 24

PUBLIC

UBLIC SIMON FRASER I =
KNOW umvsnsn'vllbl'ary

class (classes/article/Article.inc.php) has an associated DAO called
ArticleDAO (classes/article/ArticleDAO.inc.php) that is responsible for
implementing interactions between the Model class and its database entries.

All DAOs extend the pao class (classes/db/DAO. inc.php). All communication
between PHP and the database back-end is implemented in DAO classes. As much
as is logical and efficient, a given DAO should limit its interaction to the table or
tables with which it is primarily concerned.

DAOs, when used, are never instantiated directly. Instead, they are retrieved by
name using the DAORegistry class, which maintains instances of the system's
DAO:s. For example, to retrieve an article DAO:

SarticleDao = &DAORegistry::getDAO('ArticleDAO');

Then, to use it to retrieve an article with the ID stored in $articleld:

Sarticle = &SarticleDao->getArticle($Sarticleld);

Note that many of the DAO methods that fetch a set of results will return
subclasses of the TtemIterator class rather than the usual PHP array. This
facilitates paging of lists containing many items, and can be more efficient than
preloading all results into an array. See the discussion of Paging Classes in the
Support Classes section.

Support Classes

Sending Email Messages

classes/mail/Mail.inc.php
classes/mail/MailTemplate.inc.php
classes/mail/ArticleMailTemplate.inc.php

These classes, along with the EmailTemplate and MailTemplate model classes
and EmailTemplateDAO DAO class, provide all email functionality used in the

system.

Mail.inc.php provides the basic functionality for composing, addressing, and
sending an email message. It is extended by the class MailTemplate to add

Page 25

PUBLIC

KNOW ‘=7 SIMON FRASER

Aaay umvsnsm!libl'ary

support for template-based messages. In turn, ArticleMailTemplate adds
features that are useful for messages pertaining to a specific article, such as
message logging that can be viewed on a per-article basis.

For a sample of typical usage and invocation code, see the various Action classes,
such as SectionEditorAction's notifyReviewer method. Note that since
nearly all emails composed by the system must be displayed to the user, who then
must be able to modify it over several browser request-response cycles, some
complexity is necessary to maintain the system's state between requests.

Internationalization

System internationalization is a critical feature for OJS 2.x; it has been designed
without making assumptions about the language it will be presented in.

There is a primary XML document for each language of display, located in the
locale directory in a subdirectory named after the locale; for example, the en_us
locale information is located in the 1ocale/en_US/locale.xml file.

This file contains a number of locale strings used by the User Interface (nearly all
directly from the Smarty templates, although some strings are coded in the Page
classes, for example).

These are invoked by Smarty templates with the {translate
key="[keyName] "} directive (see the section titled User Interface for more
information). Variable replacement is supported.

The system's locales are configured, installed and managed on the Languages
page, available from Site Settings. The available locales list is assembled from the
registry file registry/locales.xml.

In addition to the language-dependent 1ocale.xml file, locale-specific data can
be found in subdirectories of the dbscripts/xml/data/locale and
registry/locale directories, once again named after the locale. For example,
the XML file
dbscripts/xml/data/locale/en_US/email_templates_data.xml contains
all email template text for the en_us (United States English) locale.

Page 26

PUBLIC

KNOW ‘=7 SIMON FRASER

Aaay umvsnsm!libl'ary

All XML data uses UTF-8 encoding and as long as the back-end database is
configured to properly handle special characters, they will be stored and
displayed as entered.

OJS 2.x has limited support for simultaneous multiple locales for a single journal.
For example, articles have a primary locale; however, titles and abstracts can have
up to two additional locales.

Internationalization functions are provided by classes/i18n/Locale.inc.php.
See also classes/template/TemplateManager.inc.php (part of the User
Interface's support classes) for the implementation of template-based locale
translation functions.

Forms

The Forms class (classes/form/Form.inc.php) and its various subclasses, such
as classes/manager/form/SectionForm. inc.php, which is used by a Journal
Manager to modify a Section, centralize the implementation of common tasks
related to form processing such as validation and error handling.

Subclasses of the Form class override the constructor, initData, display,
readInputData, and execute methods to define the specific form being
implemented. The role of each function is described below:

e Class constructor: Initialize any variables specific to this form. This is useful,
for example, if a form is related to a specific Article; an Article object or
article ID can be required as a parameter to the constructor and kept as a
member variable.

® initData: Before the form is displayed, current or default values (if any)
must be loaded into the _data array (a member variable) so the form class
can display them.

® display: Just before a form is displayed, it may be useful to assign
additional parameters to the form's Smarty template in order to display
additional information. This method is overridden in order to perform such
assignments.

® readInputData: This method is overridden to instruct the parent class
which form parameters must be used by this form. Additionally, tasks like

Page 27

PUBLIC

KNOW ‘=7 SIMON FRASER

Aaay umvsnsm!libl'ary

validation can be performed here.

® cxecute: This method is called when a form's data is to be “committed.”
This method is responsible, for example, for updating an existing database
record or inserting a new one(via the appropriate Model and DAO classes).

The best way to gain understanding of the various Form classes is to view a
typical example such as the sectionForm class from the example above
(implemented in classes/manager/form/SectionForm.inc.php). For a more
complex set of examples, see the various Journal Manager's Setup forms (in the
classes/manager/form/setup directory).

It is not convenient or logical for all form interaction between the browser and the
system to be performed using the Form class and its subclasses; generally
speaking, this approach is only useful when a page closely corresponds to a
database record. For example, the page defined by the sectionForm class closely
corresponds to the layout of the sections database table.

Configuration

Most of OJS 2.x's settings are stored in the database, particularly journal settings
in the journal_settings table, and are accessed via the appropriate DAOs and
Model classes. However, certain system-wide settings are stored in a flat file called
config.inc.php (which is not actually a PHP script, but is so named to ensure
that it is not exposed to remote browsers).

This configuration file is parsed by the ConfigParser class
(classes/config/ConfigParser.inc.php) and stored in an instance of the
Config class (classes/config/Config.inc.php).

Core Classes

The Core classes (in the classes/core directory) provide fundamentally
important functions and several of the classes upon which much of the
functionality of OJS 2.x is based. They are simple in and of themselves, with
flexibility being provided through their extension.

Page 28

PUBLIC SIMON FRASER | 5
KNOW % lib ry
KNOW universitYl10lA

® Core.inc.php: Provides miscellaneous system-wide functions

® DataObject.inc.php: All Model classes extend this class

® Handler.inc.php: All Page classes extend this class

® Registry.inc.php: Provides a system-wide facility for global values, such

as system startup time, to be stored and retrieved

Request.inc.php: Provides a wrapper around HTTP requests, and provides

related commonly-used functions

® String.inc.php: Provides locale-independent string-manipulation
functions and related commonly-used functions

In particular, the Request class (defined in classes/core/Request.inc.php)
contains a number of functions to obtain information about the remote user and
build responses. All URLs generated by OJS to link into itself are built using the
Request : :url function; likewise, all redirects into OJS are built using the
Request: :redirect function.

Database Support

The basic database functionality is provided by the ADODB library
(http://adodb.sourceforge.net); atop the ADODB library is an additional
layer of abstraction provided by the Data Access Objects (DAOs). These make use
of a few base classes in the classes/db directory that are extended to provide
specific functionality.

® DAORegistry.inc.php: This implements a central registry of Data Access
Objects; when a DAO is desired, it is fetched through the DAO registry.

® DBConnection.inc.php: All database connections are established via this
class.

® DAO.inc.php: This provides a base class for all DAOs to extend. It provides
functions for accessing the database via the DBConnection class.

In addition, there are several classes that assist with XML parsing and loading into
the database:
® XMLDAO.inc.php: Provides operations for retrieving and modifying objects
from an XML data source
® DBDataxXMLParser.inc.php: Parses an XML schema into SQL statements

Page 29

http://adodb.sourceforge.net/

PUBLIC

KNOW ‘=7 SIMON FRASER

Aaay umvsnsm!libl'ary

File Management

As files (e.g. galleys and journal logos) are stored on the server filesystem, rather
than in the database, several classes are needed to manage this filesystem and
interactions between the filesystem and the rest of the OJS. These classes can be
found in the classes/file directory.

® FileManager.inc.php: The three subsequent file management classes
extend this class. It provides the necessary basic functionality for
interactions between the web server and the file system.

® FileWrapper.inc.php: This implements a wrapper around file access
functions that is more broadly compatible than the built-in access methods.

® ArticleFileManager.inc.php: This extends FileManager by adding
features required to manage files associated with a particular article. For
example, it is responsible for managing the directory structure associated
with article files. See also ArticleFile and ArticleFileDAO.

® PublicFileManager.inc.php: Many files, such as journal logos, are
“public” in that they can be accessed by anyone without need for
authentication. These files are managed by this class, which extends the
FileManager class.

® TemporaryFileManager.inc.php: This class allows the system to store
temporary files associated with a particular user so that they can be
maintained across requests. For example, if a user is composing an email
with an attachment, the attachment must be stored on the server until the
user is finished composing; this may involve multiple requests.
TemporaryFileManager also extends FileManager. See also
TemporaryFile and TemporaryFileDAO.

Scheduled Tasks

0OJS 2.x is capable of performing regularly-scheduled automated tasks with the
help of the operating system, which is responsible for launching the
tools/runScheduledTasks.php script via a mechanism like UNIX's cron.
Scheduled tasks must be enabled in the config.inc.php configuration file and
the journal's settings.

Automated tasks are configured in registry/scheduledTasks.xml and

Page 30

PUBLIC

KNOW ‘=7 SIMON FRASER

Aaay umvsnsm!libl'ary

information like the date of a task's last execution is stored in the
scheduled_tasks database table.

The scheduledTask model class and the associated scheduledTaskDAO are
responsible for managing these database entries. In addition, the scheduled tasks
themselves are implemented in the classes/tasks directory. Currently, only the
ReviewReminder task is implemented, which is responsible for reminding
reviewers that they have an outstanding review to complete or indicate
acceptance of.

These tasks, which extend the ScheduledTask model class and are launched by
the runScheduledTasks tool, must implement the execute () method with the
task to be performed.

Security

The OJS 2.x security model is based on the concept of roles. The system's roles are
predefined (e.g. author, reader, section editor, proofreader, etc) and users are
assigned to roles on a per-journal basis. A user can have multiple roles within the
same journal.

Roles are managed via the Role model class and associated RoleDao, which
manage the roles database table and provide security checking.

The validation class (classes/security/Validation.inc.php) is
responsible for ensuring security in interactions between the client browser and
the web server. It handles login and logout requests, generates password hashes,

and provides many useful shortcut functions for security- and validation-related
issues. The validation class is the preferred means of access for these features.

Session Management

Session management is provided by the session model class, sessionbao, and
the SessionManager class (classes/session/SessionManager.inc.php).

While session and SessionDAO manage database-persistent sessions for

Page 31

PUBLIC SIMON FRASER

i u
KNOW umvsnsn'vllbl'ary

individual users, SessionManager is concerned with the technical specifics of
sessions as implemented for PHP and Apache.

Template Support

Smarty templates (http://smarty.php.net) are accessed and managed via the
TemplateManageerwS(classes/template/TemplateManager.inc.phpL
which performs numerous common tasks such as registering additional Smarty
functions such as {translate ...}, which is used for localization, and setting
up commonly-used template variables such as URLs and date formats.

Paging Classes

Several classes facilitate the paged display of lists of items, such as submissions:
ItemIterator
ArrayltemIterator
DAOResultFactory
DBRowIterator
VirtualArraylterator

The 1temIterator class is an abstract iterator, for which specific
implementations are provided by the other classes. All DAO classes returning
subclasses of TtemIterator should be treated as though they were returning
ItemIterators.

Each iterator represents a single “page” of results. For example, when fetching a
list of submissions from SectionEditorSubmissionDAO, a range of desired row
numbers can be supplied; the TtemIterator returned (specifically an
ArrayIterator) contains information about that range.

ArrayItemIterator and VirtualArrayIterator provide support for iterating
through PHP arrays; in the case of VirtualArrayIterator, only the desired
page's entries need be supplied, while ArrayItemIterator will take the entire
set of results as a parameter and iterate through only those entries on the current

page.

DAOResultFactory, the most commonly used and preferred TtemIterator

Page 32

http://smarty.php.net/

PUBLIC

UBLIC SIMON FRASER I =
KNOW umvsnsn'vllbl'ary

subclass, takes care of instantiating Model objects corresponding to the results
using a supplied DAO and instantiation method.

DBRowIterator iS an ItemIterator wrapper around the ADODB result
structure.

Plugins

There are several classes included with the OJS 2.x distribution to help support a
plugin registry. For information on the plugin registry, see the section titled
“Plugins”.

Common Tasks

The following sections contain code samples and further description of how the
various classes interact.

Sending Emails

Emails templates for each locale are stored in an XML file called
dbscripts/xml/data/locale/[localeName] /email_templates_data.xml.
Each email has an identifier (called email_key in the XML file) such as
SUBMISSION_ACK. This identifier is used in the PHP code to retrieve a particular
email template, including body text and subject.

The following code retrieves and sends the SUBMISSTON_ACK email, which is sent
to authors as an acknowledgment when they complete a submission. (This snippet

assumes that the current article ID is stored in $articleId.)
// Fetch the article object using the article DAO.
SarticleDao = &DAORegistry::getDAO('ArticleDAQ');
Sarticle = &SarticleDao->getArticle(SarticlelId);

// Load the required ArticleMailTemplate class
import ('mail.ArticleMailTemplate');

// Retrieve the mail template by name.
Smail = &new ArticleMailTemplate($Sarticle, 'SUBMISSION_ACK');

Page 33

PUBLIC SIMON FRASER | 3
KNOW umvsnsm!llbl'ary

LEDGE Rl
if (Smail->isEnabled()) {
// Get the current user object and assign them as the recipient of this message.
Suser = &Request::getUser();
Smail->addRecipient ($user—->getEmail (), Suser->getFullName());

// Get the current journal object.
$Sjournal = &Request::getJournal();

// This template contains variable names of the form {$variableName} that need to
// be replaced with the appropriate values. Note that while the syntax is similar
// to that used by Smarty templates, email templates are not Smarty templates. Only
// direct variable replacement is supported.

Smail->assignParams (array (

'authorName' => $user->getFullName(),
'authorUsername' => S$Suser->getUsername (),
'editorialContactSignature' => $journal->getSetting('contactName')
"\n" . $journal->getTitle(),
'submissionUrl' => Request::getPageUrl ()
'/author/submission/' . Sarticle->getArticleId()

)) i

Smail->send() ;

Database Interaction with DAOs

The following code snippet retrieves an article object using the article ID supplied
in the sarticle1d variable, changes the title, and updates the database with the
new values.

// Fetch the article object using the article DAO.
SarticleDao = &DAORegistry::getDAO('ArticleDAO');
Sarticle = &S$SarticleDao->getArticle($SarticlelId);

Sarticle->setTitle('This is the new article title.');

// Update the database with the modified information.
SarticleDao->updateArticle (Sarticle);

Similarly, the following snippet deletes an article from the database.

// Fetch the article object using the article DAO.
SarticleDao = &DAORegistry::getDAO('ArticleDAO');
Sarticle = &S$SarticleDao->getArticle($SarticlelId);

// Delete the article from the database.
SarticleDao->deleteArticle (Sarticle);

The previous task could be accomplished much more efficiently with the
following:

// Fetch the article object using the article DAO.
SarticleDao = &DAORegistry::getDAO('ArticleDAO');

Page 34

PUBLIC SIMON FRASER | 3
KNOW umvsnsn'vllbl'ary

SarticleDao->deleteArticleById($articlelId);

Generally speaking, the DAOs are responsible for deleting dependent database
entries. For example, deleting an article will delete that article's authors from the
database. Note that this is accomplished in PHP code rather than database
triggers or other database-level integrity functionality in order to keep database
requirements as low as possible.

User Interface

The User Interface is implemented as a large set of Smarty templates, which are
called from the various Page classes. (See the section titled “Request Handling”.)

These templates are responsible for the HTML markup of each page; however, all
content is provided either by template variables (such as article titles) or through
locale-specific translations using a custom Smarty function.

You should be familiar with Smarty templates before working with OJS 2.x
templates. Smarty documentation is available from http://smarty.php.net.

Variables

Template variables are generally assigned in the Page or Form class that calls the
template. In addition, however, many variables are assigned by the
TemplateManager class and are available to all templates:

® defaultCharset: the value of the “client_charset” setting from the
[i18n] section of the config.inc.php configuration file

currentLocale: The symbolic name of the current locale

baseUr1: Base URL of the site, e.g. http://www.mylibrary.com
requestedPage: The symbolic name of the requested page

pageTitle: Default name of locale key of page title; this should be replaced
with a more appropriate setting in the template

siteTitle: If the user is currently browsing a page associated with a
journal, this is the journal title; otherwise the site title from Site
Configuration

Page 35

http://www.mylibrary.com/
http://smarty.php.net/

PUBLIC

UBLIC SIMON FRASER I =
KNOW umvsnsn'vllbl'ary

publicFilesDir: The URL to the currently applicable Public Files directory
(See the section titled File Management)

pagePath: Path of the requested page and operation, if applicable,
prepended with a slash; e.g. /user/profile

currentUrl: The full URL of the current page

dateFormatTrunc: The value of the date_format_trunc parameter in the
[general] section of the config.inc.php configuration file; used with the
date_format Smarty function

dateFormatShort: The value of the date_format_short parameter in the
[general] section of the config.inc.php configuration file; used with the
date_format Smarty function

dateFormatLong: The value of the date_format_long parameter in the
[general] section of the config.inc.php configuration file; used with the
date_format Smarty function

datetimeFormatShort: The value of the datetime format_ short
parameter in the [general] section of the config.inc.php configuration
file; used with the date_format Smarty function

datetimeFormatLong: The value of the datet ime_format_long parameter
in the [general] section of the config.inc.php configuration file; used
with the date_format Smarty function

currentLocale: The name of the currently applicable locale; e.g. en_Us
articleSearchByOptions: Names of searchable fields used by the search
feature in the sidebar and on the Search page

userSession: The current Session object

isUserLoggedIn: Boolean indicating whether or not the user is logged in
loggedInUsername: The current user's username, if applicable
page_links: The maximum number of page links to be displayed for a
paged list within the current Journal or site context.

items_per_page: The maximum number of items to display per page of a
paged list within the current Journal or site context.

Additionally, if the user is browsing pages belonging to a particular journal, the
following variables are available:

currentJournal: The currently-applicable journal object (of the Journal
class)

alternateLocalel: First alternate locale (alternateLocale?2) journal
setting

alternateLocale2: Second alternate locale (alternateLocalel) journal
setting

Page 36

PUBLIC SIMON FRASER | 3
KNOW umvsnsn'vllbl'ary

navMenulItems: Navigation items (navItems) journal setting
pageHeaderTitle: Used by templates/common/header.tpl to display
journal-specific information

pageHeaderLogo: Used by templates/common/header.tpl to display
journal-specific information

alternatePageHeader: Used by templates/common/header.tpl to
display journal-specific information

metaSearchDescription: Current journal's description; used in meta tags
metaSearchKeywords: Current journal's keywords; used in meta tags
metaCustomHeaders: Current journal's custom headers, if defined; used in
meta tags

stylesheets: An array of stylesheets to include with the template
pageFooter: Custom footer content to be displayed at the end of the page

If multiple languages are enabled, the following variables are set:

enableLanguageToggle: Set to t rue when this feature is enabled
languageToggleLocales: Array of selectable locales

Functions & Modifiers

A number of functions have been added to Smarty's built-in template functions to
assist in common tasks such as localization.

® translate (eg {translate key="my.locale.key” myVar="value"}): This function

provides a locale-specific translation. (See the section called Localization.)
Variable replacement is possible using Smarty-style syntax; using the above
example, if the 1ocale.xml file contains:

<message key="my.locale.key”>myVar equals “{$myVar}”.</message>

The resulting output will be:

myVar equals “value”.

(Note that only direct variable replacements are allowed in locale files. You
cannot call methods on objects or Smarty functions.)

assign (eg {translatelassign:”myVar” key="my. locale.key"}): ASSign a value to a
template variable. This example is similar to {translate ...}, except that
the result is assigned to the specified Smarty variable rather than being
displayed to the browser.

html_options_translate (eg {html_options_translate values=$myValuesArray
selected=$selectedoption}): Convert an array of the form

array ('optionvall' => 'locale.key.optionl', 'optionVal2' => 'locale.key.option2')

Page 37

PUBLIC

UBLIC SIMON FRASER I =
KNOW umvsnsn'vllbl'ary

to a set of HTML <option>...</option> tags of the form
<option value="optionVall”>Translation of “locale.key.optionl” here</option>
<option value="optionVal2”>Translation of “locale.key.option2” here</option>

for use in a Select menu.

® get_help_id (€.8. (get_help id key="myHelpTopic” url="true”}): Displays the
topic ID or a full URL (depending on the value of the ur1 parameter) to the
specific help page named.

® icon (e.8. {icon name="mail” alt="...” url="http://link.url.com” disabled="true”}):
Displays an icon with the specified link URL, disabled or enabled as
specified. The name paramter can take on the values comment, delete,
edit, letter, mail, Or view.

® help_topic (€.8. (help topic key="(dir)*.page.topic" text="foo"}): Displays a
link to the specified help topic, with the text parameter defining the link
contents.

® page_links: (eg {page_links iteratorstubmissions}): Displays the page links
for the paged list associated with the TtemIterator subclass (in this
example, $submissions).

® page_info: (e.g.{$page_info name="submissions" iterator:$submissions)):
Displays the page information (e.g. page number and total page count) for
the paged list associated with the TtemIterator subclass (in this case,
$submissions).

® iterate: (e.g. (siterate from-submissions item-submission}): Iterate through
items in the specified TtemIterator subclass, with each item stored as a
smarty variable with the supplied name. (This example iterates through
items in the $submissions iterator, which each item stored as a template
variable named $submission.) Note that there are no dollar-signs preceding
the variable names -- the specified parameters are variable names, not
variables themselves.

® strip_unsafe_html: (€.g. ($myvar|strip_unsafe_ntm1}): Remove HTML tags
and attributes deemed as “unsafe” for general use. This modifier allows
certain simple HTML tags to be passed through to the remote browser, but
cleans anything advanced that may be used for XSS-based attacks.

® call_hook: (e.g. {call_hook name:"Templates::Manager::Index::ManagementPages"})
Call a plugin hook by name. Any plugins registered against the named hook
will be called.

There are many examples of use of each of these functions in the templates
provided with OJS 2.x.

Page 38

http://link.url.com/

PUBLIC 7 SIMON FRASER I ¢
KNOW umvsnsn'vllbl'ary
Plugins

0OJS 2.1 contains a full-fledged plugin infrastructure that provides developers with
several mechanisms to extend and modify the system's behavior without
modifying the codebase. The key concepts involved in this infrastructure are
categories, plugins, and hooks.

A plugin is a self-contained collection of code and resources that implements an
extension of or modification to OJS. When placed in the appropriate directory
within the OJS codebase, it is loaded and called automatically depending on the
category it is part of.

Each plugin belongs to a single category, which defines its behavior. For example,
plugins in the importexport category (which are used to import or export OJS
data) are loaded when the Journal Manager uses the “Import/Export Data”
interface or when the command-line tool is launched. Import/export plugins must
implement certain methods which are used for delegation of control between the
plugin and OJS.

Plugins are loaded when the category they reside in is requested; for example,
importexport plugins are loaded by the Page class ImportExportHandler
(implemented in the file pages/manager/ImportExportHandler.inc.php).
Requests are delegated to these plugins via the methods defined in the
ImportExportPlugin class, which each plugin in this category extends.

Hooks are used by plugins as a notification tool and to override behaviors built
into OJS. At many points in the execution of OJS code, a hook will be called by
name — for example, LoadHandler in index.php. Any plugins that have been
loaded and registered against that hook will have a chance to execute code to
alter the default behavior of OJS around the point at which that hook was called.

While most of the plugin categories built into OJS define specific tasks like
authorization and harvesting tasks, there is a generic category for plugins that
do not suit any of the other categories. These are more complicated to write but
offer much more flexibility in the types of alterations they can make to OJS.
Hooks are generally intended for use with plugins in this category.

Page 39

PUBLIC

UBLIC SIMON FRASER I =
KNOW umvsnsn'vllbl'ary

Objects & Classes

Plugins in OJS 2.x are object-oriented. Each plugin extends a class defining its
category's functions and is responsible for implementing them.

Category Base Class
generic GenericPlugin (classes/plugins/GenericPlugin.inc.php)
importexport ImportExportPlugin (classes/plugins/ImportExportPlugin.inc.php)
auth AuthPlugin (classes/plugins/AuthPlugin.inc.php)
gateways GatewayPlugin (classes/plugins/GatewayPlugin.inc.php)

Each base class contains a description of the functions that must be implemented
by plugins in that category.

Plugins are managed by the PluginRegistry class (implemented in
classes/plugins/PluginRegistry.inc.php). They can register hooks by
using the HookRegistry class (implemented in
classes/plugins/HookRegistry.inc.php).

Sample Plugin

The following code listings illustrate a basic sample plugin for the generic plugin
category. This plugin can be installed by placing all of its files in a directory called
plugins/generic/example.

This plugin will add an entry to the Journal Manager's list of functions, available
by following the ‘Journal Manager” link from User Home.

Page 40

PUBLIC SIMON FRASER | 3
KNOW umvsnsn'vllbl'ary

Loader Stub

The plugin is loaded by OJS by loading a file in the plugin directory called
index.php. This is a loader stub responsible for instantiating and returning the
plugin object:

<?php
require ('ExamplePlugin.inc.php');
return new ExamplePlugin();

?>

Plugin Object

The plugin object encapsulates the plugin and generally will do most of the work.
In this case, since this plugin will be in the generic category, the object must
extend the GenericPlugin class:
<?php
import ('classes.plugins.GenericPlugin');
class ExamplePlugin extends GenericPlugin {
function register ($category, $path) {
if (parent::register ($category, S$path)) {
HookRegistry::register (
'Templates: :Manager::Index: :ManagementPages',
array (&$this, 'callback')
)i
return true;
}
return false;
}
function getName() {
return 'ExamplePlugin';
}
function getDisplayName () ({

return 'Example Plugin';

Page 41

PUBLIC

UBLIC SIMON FRASER I =
KNOW umvsnsn'vllbl'ary

function getDescription() {
return 'A description of this plugin';
}
function callback ($hookName, S$args) {
Sparams =& S$args[0];
$Ssmarty =& S$Sargs[1l];
Soutput =& $args[2];

Soutput = '<1i>» My New Link</1li>"';

return false;

}

?>

The above code illustrates a few of the most important parts of plugins: the
register function, hook registration and callback, and plugin management.

Registration Function

Whenever OJS loads and registers a plugin, the plugin's register (...) function
will be called. This is an opportunity for the plugin to register against any hooks it
needs, load configuration, initialize data structures, etc. In the above example, all
the plugin needs to do (aside from calling the parent class's register function) is
register against the Templates: :Manager: : Index: :ManagementPages hook.

Another common task to perform in the registration function is loading locale
data. Locale data should be included in subdirectories of the plugin's directory
called 1ocale/[localeName] /locale.xml, where [localeName] is the
standard symbolic name of the locale, such as en_us for US English. In order for
these data files to be loaded, plugins should call $this->addLocaleData(); in
the registration function after calling the parent registration function.

Hook Registration and Callback

The above example serves as a clear illustration of hook registration and callback;
along with the list of hooks below, this should provide all the required information

Page 42

http://pkp.sfu.ca/

PUBLIC

KNOW ‘=7 SIMON FRASER

Aaay umvsnsm!libl'ary

for extending OJS using hooks. However, there are a few important details that
need further examination.

The process by which a plugin registers against a hook is as follows:
HookRegistry::register (
'Templates: :Manager: : Index: :ManagementPages',
array (&$this, 'callback')

)i
In the example above, the parameters to HookRegistry: :register are:
1. The name of the hook. See the complete list of hooks below.

2. The callback function to which control should be passed when the hook is
encountered. This is the same callback format used by PHP's
call_user_func function; see the documentation at http://php.net for
more information. It is important that $this be included in the array by
reference, or you may encounter problems with multiple instances of the
plugin object.

The definition of the callback function (named and located in the above
registration call) is:
function callback ($hookName, $args) {
Sparams =& $args[0];
Ssmarty =& S$Sargs[1l];

Soutput =& $args([2];

}

The parameter list for the callback function is always the same:

1. The name of the hook that resulted in the callback receiving control (which
can be useful when several hook registrations are made with the same
callback function), and

2. An array of additional parameters passed to the callback. The contents of
this array depend on the hook being registered against. Since this is a
template hook, the callback can expect the three parameters named above.

The array-based passing of parameters is slightly cumbersome, but it allows hook

Page 43

http://php.net/

PUBLIC

UBLIC SIMON FRASER I =
KNOW umvsnsn'vllbl'ary

calls to compatibly pass references to parameters if desired. Otherwise, for
example, the above code would receive a duplicated Smarty object rather than the
actual Smarty object and any changes to attributes of the $smarty object would
disappear upon returning.

Finally, the return value from a hook callback is very important. If a hook callback
returns true, the hook registry considers this callback to have definitively
“handled” the hook and will not call further registered callbacks on the same
hook. If the callback returns false, other callbacks registered on the same hook
after the current one will have a chance to handle the hook call.

The above example adds a link to the Journal Manager's list of management
functions. If another plugin (or even the same plugin) was registered to add
another link to the same list, and this plugin returned true, the other plugin's
hook registration would not be called.

Plugin Management

In the example plugin, there are three functions that provide metadata about the
plugin: getName (), getDisplayName (), and getDescription (). These are part
of a management interface that is available to the Journal Manager under
“System Plugins”.

The result of the getName () call is used to refer to the plugin symbolically and
need not be human-readable; however, the getDisplayName () and
getDescription () functions should return localized values. This was not done
in the above example for brevity.

The management interface allows plugins to specify various management
functions the Journal Manager can perform on the plugin using the
getManagementVerbs () and manage ($verb, S$args) functions.
getManagementVerbs () should return an array of two-element arrays as follows:

Page 44

PUBLIC SIMON FRASER | 3
KNOW umvsnsn'vllbl'ary

Sverbs = parent::getManagementVerbs () ;
Sverbs[] = array('funcl', Locale::translate('my.localization.key.for.funcl'));

Sverbs[] = array('func2', Locale::translate('my.localization.key.for.func2'));

Note that the parent call should be respected as above, as some plugin categories
provide management verbs automatically.

Using the above sample code, the plugin should be ready to receive the
management verbs funcl and func2 as follows (once again respecting any
management verbs provided by the parent class):
function manage ($verb, $args) {
if (!parent::manage($verb, $args)) switch ($verb) {
case 'funcl':
// Handle funcl here.
break;
case 'func2':
// Handle func2 here.
break;
default:
return false;
}

return true;

Additional Plugin Functionality

There are several additional plugin functionalities that may prove useful:

e Plugin Settings: Plugins can store and retrieve settings with a mechanism
similar to Journal Settings. Use the Plugin class's getSetting and
updateSetting functions.

e Templates: Any plugin can keep templates in its plugin directory and
display them by calling:

StemplateMgr->display ($this->getTemplatePath() . 'templateName.tpl');
See the native import/export plugin for an example.
® Schema Management: By overriding get InstallSchemaFile () and

Page 45

PUBLIC
KNOW
LEDGE

SIMON FRASER I =
umvsnsn'vllbl'ary

placing the named schema file in the plugin directory, generic plugins can
make use of OJS's schema-management features. This function is called on

0JS install or upgrade.

e Data Management: By overriding get InstallDataFile () and placing the
named data file in the plugin directory, generic plugins can make use of
0JS's data installation feature. This function is called on OJS install or

upgrade.

e Helper Code: Helper code in the plugin's directory can be imported using
Sthis—->import ('HelperCode'); // imports HelperCode.inc.php

Hook List

The following list describes all the hooks built into OJS as of release 2.1.
Ampersands before variable names (e.g. s $sourceFile) indicate that the
parameter has been passed to the hook callback in the parameters array by
reference and can be modified by the hook callback. The effect of the hook
callback's return value is specified where applicable; in addition to this, the hook
callback return value will always determine whether or not further callbacks
registered on the same hook will be skipped.

Name Parameters

LoadHandler &Spage, &Sop,
&$sourceFile

ArticleEmailLogDAO:: | &$entry,

_returnLogEntryFromR &S$Srow
ow

ArticleEventLogDAO:: &S$entry,

_returnLogEntryFromR &S$Srow
ow

Description

Called by OJS's main index.php script after
the page (&$page), operation (s$op), and
handler code file (¢ $sourceFile) names have
been determined, but before $sourceFile is
loaded. Can be used to intercept browser
requests for handling by the plugin. Returning
true from the callback will prevent OJS from
loading the handler stub in $sourceFile.

Called after ArticleEmailLogDAO builds an
ArticleEmailLogEntry (&$Sentry) from the
database row (&$row), but before the entry is
passed back to the calling function.

Called after ArticleEventLogDAO builds an
ArticleEventLogEntry (&Sentry) from the

Page 46

PUBLIC =7 SIMON FRASER || 3
KNOW % lib ry
KNOW universityllOlFa
Name Parameters Description
database row (&$row), but before the entry is
passed back to the calling function.
ArticleCommentDAO::_ | &SarticleComm . .
etuenartiolocomment ent seroe - Called after ArticleCommentDAO builds an

FromRow

ArticleComment (&$articleComment) from
the database row (s&$row), but before the
comment is passed back to the calling function.

ArticleDAO::_returnA &Sarticle, Called after ArticleDao builds an Article

rticleFromRow &Srow
(ssarticle) from the database row (s&Srow),
but before the article is passed back to the
calling function.

ArticleFileDRO:: ret &varticlefile (gllad after ArticleFileDAO builds an

urnArticleFileFromRo |, &Srow

w ArticleFile (s&SarticleFile) from the
database row (&$row), but before the article
file is passed back to the calling function.

ArticleGalleybrO::_r &sgalley, Called after ArticleGalleyDAO builds an

eturnGalleyFromRow &Srow
ArticleGalley (&$galley) from the database
row (&S$row), but before the galley is passed
back to the calling function.

Articlenotepnoiixet ssarticleNote Called after ArticleNotepao builds an

w ArticleNote (&SarticleNote) from the
database row (&$row), but before the entry is
passed back to the calling function.

AuEhorDAO: :_returnku | dfauthor, Called after AuthorDAO builds an Author

orFromRow &Srow

(sSauthor) from the database row (s$row),
but before the author is passed back to the
calling function.

SuppFileDAO: :_return &S$SsuppFile, , : .

Supoilerromon ciroy Called after suppFileDA0 builds an SuppFile
(sSsuppFile) from the database row (&$row),
but before the supplementary file is passed
back to the calling function.

PublishedArticleDAO: &S$publishedAr . . .

: returnpublishodArt |tinle, eSeow Called after PublishedArticleDAO builds a

icleFromRow PublishedArticle (&$publishedArticle)

from the database row (s$row), but before the
published article is passed back to the calling

Page 47

PUBLIC
KNOW
LEDGE

Name

CommentDAO: :_returnC
ommentFromRow

Request:

Request:

Request:

Request:

Request:

Url

:redirect

:getBaseUrl

:getBasePath

:getIndexUrl

:getComplete

Parameters

&Scomment,
&Srow,
&$childLevels

&surl

&SbaseUrl

&$basePath

&$indexUrl

&$completeUrl

SIMON FRASER I =
umvsnsn'vllbl'ary

Description
function.

Called after CommentDAO builds a Comment
(sScomment) from the database row (s&Srow),
before fetching s$childLevels child
comments and returning the comment to the
calling function. Returning true will prevent
OJS from fetching any child comments.

Called before Request : :redirect performs a
redirect to &« $url. Returning true will prevent
OJS from performing the redirect after the hook
is finished. Can be used to intercept and rewrite
redirects.

Called the first time Request : :getBaseUrl is
called after the base URL has been determined
but before returning it to the caller. This value
is used for all subsequent calls.

Called the first time Request : : getBasePath is
called after the base path has been determined
but before returning it to the caller. This value
is used for all subsequent calls.

Called the first time Request : :get IndexUrl is
called after the index URL has been determined
but before returning it to the caller. This value
is used for all subsequent calls.

Called the first time
Request: :getCompleteUrl is called after the
complete URL has been determined but before
returning it to the caller. This value is used for
all subsequent calls.

Request:

rl

:getRequestU

&SrequestUrl

Called the first time

Request : :getRequestUrl is called after the
request URL has been determined but before
returning it to the caller. This value is used for
all subsequent calls.

Page 48

PUBLIC
KNOW
LEDGE

Name

Request:

ing

:getQueryStr

Parameters

&S$queryString

SIMON FRASER I =
umvsnsn'vllbl'ary

Description

Called the first time

Request: :getQueryString is called after the
query string has been determined but before
returning it to the caller. This value is used for
all subsequent calls.

Request:

ath

Request:

st

Request:

Request::

dr

Request:

main

Request:

t

Request:

:getRequestP

:getServerHo

:getProtocol

getRemoteAd

:getRemoteDo

:getUserAgen

:getRequeste

&SrequestPath

&$serverHost

&$protocol

&SremoteAddr

&$SremoteDomai

n

&$userAgent

&$journal

Called the first time

Request : :getRequestPath is called after the
request path has been determined but before
returning it to the caller. This value is used for
all subsequent calls.

Called the first time

Request: :getServerHost is called after the
server host has been determined but before
returning it to the caller. This value is used for
all subsequent calls.

Called the first time Request : :getProtocol is
called after the protocol (http or https) has
been determined but before returning it to the
caller. This value is used for all subsequent
calls.

Called the first time

Request : : getRemoteAddr is called after the
remote address has been determined but before
returning it to the caller. This value is used for
all subsequent calls.

Called the first time

Request : :getRemoteDomain is called after
the remote domain has been determined but
before returning it to the caller. This value is
used for all subsequent calls.

Called the first time Request : :getUserAgent
is called after the user agent has been
determined but before returning it to the caller.
This value is used for all subsequent calls.

Called the first time

Page 49

PUBLIC H
KNOW universitvlibrary
Name Parameters Description
dJournalPath Request : :getRequestedJournalPath is
called after the requested journal path has been
determined but before returning it to the caller.
This value is used for all subsequent calls.
[Anything]bao::Const &vdatasource Called whenever the named DAO's constructor
is called with the specified s $datasource. This
hook should only be used with PHP >= 4.3.0.
ishipnaiiertiias il by bt m iy Any DAO function calling DAO: :retrieve will
DAO: :retrieve] &$value cause a hook to be triggered. The SQL
statement in &$sql can be modified, as can the
ADODB parameters in &$params. If the hook
callback is intended to replace the function of
this call entirely, & $value should receive the
retrieve call's intended result and the hook
should return true. This hook should only be
used with PHP >= 4.3.0.
porpireioesi s 2 Any DAO function calling
DAO: :retrieveCached] &$secsToCache DAOQ::retrieveCached will cause a hook to be
, &Svalue . .
triggered. The SQL statement in s$sqgl can be
modified, as can the ADODB parameters in
&$params and the seconds-to-cache value in
&$secsToCache. If the hook callback is
intended to replace the function of this call
entirely, ¢ $value should receive the retrieve
call's intended result and the hook should
return true. This hook should only be used
with PHP >= 4.3.0.
[e fsl - Any DAO function calling
DAO::retrievelimit] | &$numRows, DAO: :retrieveCached will cause a hook to be
&$offset, . .
sSvalue triggered. The SQL statement in &$sql can be

modified, as can the ADODB parameters in
&$params, and the fetch seek and limit
specified in s$offset and «$numRows. If the
hook callback is intended to replace the
function of this call entirely, & $value should
receive the retrieve call's intended result and

Page 50

PUBLIC SIMON FRASER I 3
KNOW % lib ry
KNOW UNIvERsITYIIDIFA
Name Parameters Description
the hook should return true. This hook should
only be used with PHP >= 4.3.0.
[Anything]DAO:: [Any | &$sql, : :
function calling &Sparams, Any DAO funCthH Calhng
DRO::retrieveRange] &$dbResultRan DAO: :retrieveRange will cause a hook to be

ge, &S$value

triggered. The SQL statement in «$sql can be
modified, as can the ADODB parameters in
&S$params and the range information in
&$dbResultRange. If the hook callback is
intended to replace the function of this call
entirely, s Svalue should receive the retrieve
call's intended result and the hook should
return true. This hook should only be used
with PHP >= 4.3.0.

[Anything]DAO: : [Any
function calling

DAO: :update]

&$sql,
&Sparams,
&Svalue

TemporaryFileDAO::_r &S$StemporaryFi
eturnTemporaryFileFr le, &$row

omRow

Locale: :_cacheMiss

Install::installer

&$id,
&Slocale,
&$value

&Sinstaller,
&$descriptor,

Any DAO function calling b2A0: : update will
cause a hook to be triggered. The SQL
statement in &5$sql can be modified, as can the
ADODB parameters in &$params. If the hook
callback is intended to replace the function of
this call entirely, s $value should receive the
retrieve call's intended result and the hook
should return true. This hook should only be
used with PHP >= 4.3.0.

Called after TemporaryFileDaO builds a
TemporaryFile (&StemporaryFile) from the
database row (s&$row), but before the
temporary file is passed back to the calling
function.

Called if a locale key couldn't be found in the
locale cache. «$id is the key for the missing
locale string, s$1ocale is the locale name (e.g.
en_us). If this hook is to provide the result for
this cache miss, the value should be stored in
&$value and the hook callback should return
true.

Called when the installer is instantiated with

Page 51

PUBLIC
KNOW
LEDGE

Name

Installer::destroy

Installer::prelnstal

1

Installer::postInsta

11

Installer::parselnst

aller

Installer::executeln

staller

Installer::updateVer

sion

IssueAction: :subscri

ptionRequired

IssueAction: :subscri

bedUser

Parameters

&Sparams

&$installer

&$Sinstaller,
&Sresult

&S$installer,

&Sresult

&$installer,
&$result

&$installer,
&Sresult

&$Sinstaller,
&Sresult

&$journal,
&$issue,
&Sresult

&$journal,
&Sresult

25 SIMON FRASER | 3
umvsnsn'vllbl'ary

Description

the descriptor path in s$descriptor and the
parameters in s$params. If the hook returns
true, the usual initialization of Installer
attributes will not be performed.

Triggered when the installer cleanup method is
called.

Called after the installer's pre-installation tasks
are completed but before the success/failure
result in ¢$result is returned.

Called when the installer's post-installation
tasks are completed but before the
success/failure result in ¢$result is returned.

Called after the installer has completed parsing
the installation task set but before the
success/failure result in s$result is returned.

Called after the installer has executed but
before the success/failure result in ¢Sresult is
returned.

Called after the installer has updated the
system version information but before the
success/failure result in sSresult is returned.

Called after OJS has determined whether or not
a subscription is required for viewing &$issue
in £$journal but before the true/false value
&Sresult is returned.

Called after OJS has determined whether or not
the current user is subscribed to &$journal,
before the true/false value sSresult is
returned.

IssueAction: :subscri

bedDomain

&$journal,
&Sresult

Called after OJS has determined whether or not
the current user comes from a domain
subscribing to &«$journal, before the true/false
value s$result is returned.

Page 52

PUBLIC
KNOW
LEDGE

Name

IssueDAO: :_returnlss
ueFromRow

IssueDAOQ: :_returnPub
lishedIssueFromRow

JournalDAO: :_returnd

Parameters

&$issue,
&Srow

&$issue,
&Srow

&$journal,

e

universitvlibrary

Description

Called after IssueDAO builds an Issue
(s$issue) from the database row (s&$row), but
before the issue is passed back to the calling
function.

Called after TssueDAO builds a published
Issue (&$issue) from the database row
(s $row), but before the published issue is
passed back to the calling function.

Called after Journal1Dao builds a Journal

ournalFromRow &$row
(s$journal) from the database row (s&Srow),
but before the journal is passed back to the
calling function.

Ziiii?iigg;jetums iiii;tion’ Called after sectionDa0 builds a section
(sSsection) from the database row (s&Srow),
but before the section is passed back to the
calling function.

EmailTemplateDAO::_r &S$SemailTempla

eturnBaseEmailTempla
teFromRow

EmailTemplateDAO::_r
eturnLocaleEmailTemp
lateFromRow

EmailTemplateDAO::_r
eturnEmailTemplateFr
omRow

Mail::send

te, &Srow

&$emailTempla
te, &Srow

&$emailTempla
te, &Srow

&Smail,
&Srecipients,
&$subject,
&$mailBody,
&Sheaders,
&$additionalP
arameters

Called after EmailTemplateDAO builds a
BaseEmailTemplate (&SemailTemplate)
from the database row (s$row), but before the
base email template is passed back to the
calling function.

Called after EmailTemplateDAO builds a
localized LocaleEmailTemplate
(sSemailTemplate) from the database row
(&Srow), but before the localized email
template is passed back to the calling function.

Called after EmailTemplateDAO builds an
EmailTemplate (&$emailTemplate) from the
database row (&$row), but before the email
template is passed back to the calling function.

Called just before an email with the specified
parameters is sent. If this hook callback is to
handle the email sending itself, the callback
should return true and OJS's sending function

Page 53

PUBLIC
KNOW
LEDGE

Name

RTDAO: :_returnJourna
1RTFromRow

RTDAO: :_returnVersio
nFromRow

RTDAO: :_returnSearch
FromRow

RTDAO: :_returnContex
tFromRow

AccessKeyDAO: :_retur
nAccessKeyFromRow

RoleDAO:
FromRow

:_returnRole

SiteDAO:
FromRow

:_returnSite

VersionDAO: :_returnV
ersionFromRow

Parameters

&Srt, &Srow

&$version,
&Srow

&S$search,
&$row

&Scontext,
&$row

&SaccessKey,
&Srow

&Srole, &Srow

&$Ssite,

&Srow

&$version,
&Srow

[fOBF]

=71 SIMON FRASER

umvsnsm!libl'ary

Description
will be skipped.

Called after rTDAO builds a Reading Tools RT
(s&$rt) object from the database row (s$row),
but before the Reading Tools object is passed
back to the calling function.

Called after rTDAO builds a Reading Tools
Version (&$version) object from the
database row (s $row), but before the Reading
Tools version object is passed back to the
calling function.

Called after rTDAO builds a Reading Tools
Search (&$search) object from the database
row (&S$row), but before the Reading Tools
search object is passed back to the calling
function.

Called after rTDAO builds a Reading Tools
Context (&$context) object from the
database row (s $row), but before the Reading
Tools context object is passed back to the
calling function.

Called after AccessKeyDAO builds an
AccessKey (&$accessKey) object from the
database row (sS$row), but before the access
key is passed back to the calling function.

Called after RoleDa0 builds a Role (s$role)
object from the database row (&$row), but
before the Role is passed back to the calling
function.

Called after siteDAO builds a site (&$site)
object from the database row (&$row), but
before the Site is passed back to the calling
function.

Called after versionbDao builds a version
(¢$version) object from the database row

Page 54

PUBLIC SIMON FRASER I 3
KNOW % lib ry
KNOW universitYl10lA
Name Parameters Description
(¢$row), but before the Version is passed back
to the calling function.
huthorhetioniidelete ifarticlerile Called before OJS deletes the Author's article
ssauthorkevis file ¢$articleFile.
ions
authorhetion::upload &fauthorsubni - Called before OJS uploads a revised version of
evisedVersion sSsion
&$authorSubmission.
ButhorAction::comple &Sauthorsubni Called when the Author completes their
eAuthorCopyedit ssion, . .

&$email copyediting step before OJS sends the email
&Semail, if enabled, and flags the copyediting
step as completed.

Authorhction:scopyed &authorsubni Called when the Author indicates that their
erway sSsion .. .
copyediting step is underway, before OJS flags
the underway date.
huthorfetion:iupload &rauthorsubmi Called when the author uploads a file for
pyeditVersion ssion, i
s$copyeditsta gSauthorSubmission to the supplied

o &ScopyeditStage before OJS accepts the file

upload.
Ruthoraction::viewla &barticle Called when the author requests the layout
youtComments i
comments for the article s$article. If the
hook registrant wishes to prevent OJS from
instantiating and displaying the comment form,
it should return true from the callback
function.
AuthorAction::postla &Sarticle, Called when the author attempts to post a
youtComment &$emailCommen .

t layout comment on the article s$article. If
the hook registrant wishes to prevent OJS from
recording the supplied comment, it should
return true from the callback function.

AuthorAction::viewEd &$article

itorDecisionComments

Called when the author requests the editor
decision comments for the article sSarticle. If
the hook registrant wishes to prevent OJS from
instantiating and displaying the comment form,
it should return true from the callback
function.

Page 55

PUBLIC
KNOW
LEDGE

Name

AuthorAction::emailE
ditorDecisionComment

AuthorAction::viewCo
pyeditComments

Parameters

&$authorSubmi
ssion,
&Semail

&Sarticle

[fOBF]

25 SIMON FRASER | 3
umvsnsn'vllbl'ary

Description

Called before OJS sends the editor decision
comments for the article s $authorSubmission
in the email message s$email. This hook
should only be used on OJS > 2.1.0-1.

Called when the author requests the copyedit
comments for the article s$article. If the
hook registrant wishes to prevent OJS from
instantiating and displaying the comment form,
it should return true from the callback
function.

Authorhction::postCo &varticle, Called when the author attempts to post a
pyeditComment &$emailCommen o K
t copyediting comment on the article
sSarticle. If the hook registrant wishes to
prevent OJS from recording the supplied
comment, it should return true from the
callback function.

Authorhetion: rviewpr | sfarticle Called when the author requests the
proofreading comments for the article
sSarticle. If the hook registrant wishes to
prevent OJS from instantiating and displaying
the comment form, it should return true from
the callback function.

AuthorAction: :postPr &$article,

e ciomailcomen Called whfen the author attempts to post a

t proofreading comment on the article
sSarticle. If the hook registrant wishes to
prevent OJS from recording the supplied
comment, it should return true from the
callback function.

AuthorAction: :downlo &S$Sarticle, .

A Annecri oo corilerd, Cal.led vyhen the author wishes to download an

&grevisiorll, . article file (s¢Sarticle, &$fileld,

& D .

etroeuit © sSrevision) after OJS has determined

whether or not the author has access to that file
(modifiable boolean flag & $canDownload) but
before the download itself begins. If the hook
registrant wishes to override OJS's default

Page 56

PUBLIC SIMON FRASER | 5
KNOW % lib ry
KNOW universityllOlFa
Name Parameters Description
download behavior, it should return true from
the callback function.
AuthorSubmissionDAO: | &$SauthorSubmi

:_returnAuthorSubmis
sionFromRow

Action:

Action:

Action:

Action:

Action:

:viewMetadata

:saveMetadata

:instructions

reditComment

:saveComment

ssion, &Srow

&Sarticle,
&Srole

&Sarticle

&Stype,
&$Sallowed

&Sarticle,
&$comment

&Sarticle,
&Scomment,
&$emailCommen
t

Called after AuthorSubmissionDAO builds an
AuthorSubmission (&$SauthorSubmission)
object from the database row (s$row), but
before the Author Submission is passed back to
the calling function.

Called when a user in the given role (s$role)
wishes to view the metadata for the given
article (¢$article). If the hook registrant
wishes to prevent OJS from instantiating and
displaying the regular metadata form, it should
return true from its callback function.

Called before OJS updates the metadata for the
specified article s $article. If the hook
registrant wishes to prevent OJS from
performing the update, it should return true
from its callback function.

Called before OJS displays the instructions of
the requested type &$type (copy, layout, or
proof); the allowed types are listed in
&Sallowed. If the hook registrant wishes to
prevent OJS from displaying the instructions, it
should return true from its callback function.

Called before OJS instantiates and displays the
comment edit form for the given article
(sSarticle) and comment (s&Scomment). If
the hook registrant wishes to prevent OJS from
doing this, it should return true from its
callback function.

Called when a user attempts to save a comment
(sScomment) on the article (s¢$article). If the
hook registrant wishes to prevent OJS from
saving the supplied comment, it should return
true from the callback function.

Page 57

PUBLIC
KNOW
LEDGE

Name

Action: :deleteCommen
t

CopyAssignmentDAO: :_
returnCopyAssignment
FromRow

Parameters

&Scomment

&$copyAssignm
ent, &Srow

SIMON FRASER

umvsnsm!libl'ary

Description

Called before OJS deletes the supplied
comment. If the hook registrant wishes to
prevent OJS from deleting the comment, it
should return true from the callback function.

Called after cCopyAssignmentDAO builds a
CopyAssignment (&$copyAssignment) object
from the database row (s$row), but before the
copyediting assignment is passed back to the
calling function.

CopyeditorAction::co &$copyeditorS
ol eteConyedit e Called before OJS sends the .
s$editAssignm COPYEDIT_ COMPLETE email (if enabled) and
ents, .) ..
sSauthor, flags the copyeditor's initial copyediting stage
Gvemail as complete.
CopyeditorAction::co &S$ScopyeditorS
mpleteFinalCopyedit |ubmission, Caued before OJS sends the . .
&seditAzsignm COPYEDIT_FINAL_COMPLETE email (if enabled)
ents, &$email
and flags the copyeditor's final copyediting
stage as complete.
CopyeditorAction::co &$copyeditorS L
ed St Underay poopyec Called bgfore OJsS ﬂags the copyediting phase
for the given submission
(s$copyeditorSubmission) as underway. If
the hook registrant wishes to prevent OJS from
performing this flagging and the associated log
entry, it should return true from its callback.
fopyeaitorfction:iup LscopyeditorS Called before OJS uploads a revised version of
pyeditVersion ubmission
&ScopyeditorSubmission.
Copyeditorhction: :vi | &farticle Called when the copyeditor requests the layout
wLayoutComments i
comments for the article ssarticle. If the
hook registrant wishes to prevent OJS from
instantiating and displaying the comment form,
it should return true from the callback
function.
CopyeditorAction::po &$Sarticle, :
St1ayoutcomment ciomaicomen Called when the copyeditor attempts to post a

t

layout comment on the article s$article. If
the hook registrant wishes to prevent OJS from
recording the supplied comment, it should

Page 58

PUBLIC SIMON FRASER I 3
KNOW % lib ry
KNOW universityllOlFa
Name Parameters Description
return true from the callback function.
CopyeditorAction::vi &$Sarticle :
entomyeditCommont Called When the copyeditor requests the
copyediting comments for the article
sSarticle. If the hook registrant wishes to
prevent OJS from instantiating and displaying
the comment form, it should return true from
the callback function.
CopyeditorAction::po &$Sarticle, :
cetopyeditcomment stemaiicommen Called When the copyeditor attempts to post a
t copyediting comment on the article
sSarticle. If the hook registrant wishes to
prevent OJS from recording the supplied
comment, it should return true from the
callback function. This hook should only be
used with OJS > 2.1.0-1.
CopyeditorAction::do &$submission, . :
onioadCopyeditortile | sseilerd, Called_ whe_n the copyeditor wishes to download
s$revision, an article file (sSarticle, &$fileld,
&$result

CopyeditorSubmission
DAO: :_returnCopyedit
orSubmissionFromRow

EditAssignmentsDAO: :
_returnEditAssignmen

tFromRow

&$copyeditorS
ubmission,
&Srow

&$editAssignm
ent, &Srow

&$revision) after OJS has determined
whether or not the copyeditor has access to that
file (modifiable boolean flag &« $canDownload)
but before the download itself begins. If the
hook registrant wishes to override OJS's default
download behavior, it should return true from
the callback function. This hook should only be
used with OJS > 2.1.0-1.

Called after copyeditorSubmissionDAO builds
a CopyeditorSubmission
(s$copyeditorSubmission) object from the
database row (&$row), but before the
copyeditor submission is passed back to the
calling function.

Called after EditAssignmentsDAO builds an
EditAssignment (&$editAssignment) object
from the database row (s$row), but before the
editing assignment is passed back to the calling
function. This hook should only be used with

Page 59

PUBLIC
KNOW
LEDGE

Name

EditorAction::assign

Editor

EditorSubmissionDAO:
:_returnEditorSubmis

sionFromRow

LayoutAssignmentDAO:
:_returnLayoutAssign

mentFromRow

LayoutEditorAction::

deleteGalley

LayoutEditorAction::

deleteSuppFile

LayoutEditorAction::
completelLayoutEditin

g

LayoutEditorAction::
viewLayoutComments

Parameters

&$editorSubmi
ssion,
&$sectionkEdit
or, &Semail

&SeditorSubmi
ssion, &Srow

&$layoutAssig
nment, &Srow

&Sarticle,
&S$galley

&Sarticle,
&$suppFile

&Ssubmission,
&$layoutAssig
nment,

&$SeditAssignm
ents, &$Semail

&Sarticle

SIMON FRASER I =
umvsnsn'vllbl'ary

Description
OJS > 2.1.0-1.

Called before OJS assigns the specified editor
or section editor (sSsectionEditor) to the
article (s$editorSubmission) and sends (if
enabled) the supplied email ¢ $email.

Called after EditorSubmissionDAO builds an
EditorSubmission (&$editorSubmission)
object from the database row (&$row), but
before the editor submission is passed back to
the calling function.

Called after LayoutAssignmentDAO builds a
LayoutAssignment (&$layoutAssignment)
object from the database row (s$row), but
before the layout assignment is passed back to
the calling function.

Called before OJS deletes the specified galley
(sSgalley) for the article (sSarticle). If the
hook registrant wishes to prevent OJS from
deleting the galley, it should return true.

Called before OJS deletes the specified
supplementary file (¢ $suppFile) for the article
(s$article). If the hook registrant wishes to
prevent OJS from deleting the supplementary
file, it should return true.

Called before OJS flags the layout editing
assignment (s$layoutAssignment) for the
article (¢$submission) and sends (if enabled)
the supplied email ¢Semail.

Called when the layout editor requests the
layout comments for the article sSarticle. If
the hook registrant wishes to prevent OJS from
instantiating and displaying the comment form,
it should return true from the callback
function.

Page 60

PUBLIC
KNOW
LEDGE

Name

LayoutEditorAction::
postLayoutComment

LayoutEditorAction::
viewProofreadComment
s

LayoutEditorAction::
postProofreadComment

LayoutEditorAction::
downloadFile

LayoutEditorSubmissi
onDAO: :_returnLayout
EditorSubmissionFrom
Row

ProofAssignmentDAO: :
_returnProofAssignme
ntFromRow

Parameters

&Sarticle,
&S$emailCommen
t

&Sarticle

&Sarticle,
&SemailCommen
t

&Sarticle,
&$fileld,
&Srevision,
&$ScanDownload
, &Sresult

&$Ssubmission,
&Srow

&SproofAssign
ment, &Srow

[fOBF]

25 SIMON FRASER | 3
umvsnsn'vllbl'ary

Description

Called when the layout editor attempts to post
a layout comment on the article s$article. If
the hook registrant wishes to prevent OJS from
recording the supplied comment, it should
return true from the callback function.

Called when the layout editor requests the
proofreading comments for the article
sSarticle. If the hook registrant wishes to
prevent OJS from instantiating and displaying
the comment form, it should return true from
the callback function.

Called when the layout editor attempts to post
a proofreading comment on the article
sSarticle. If the hook registrant wishes to
prevent OJS from recording the supplied
comment, it should return true from the
callback function.

Called when the layout editor wishes to
download an article file (s$article,
&$fileld, &$revision) after OJS has
determined whether or not the layout editor
has access to that file (modifiable boolean flag
&$canDownload) but before the download
itself begins. If the hook registrant wishes to
override OJS's default download behavior, it
should pass a success boolean into &Sresult
and return true from the callback function.

Called after LayoutEditorSubmissionDAO
builds a LayoutEditorSubmission
(s$submission) object from the database row
(&$row), but before the submission is passed
back to the calling function.

Called after ProofAssignmentDAO builds a
ProofAssignment (&$proofAssignment)
object from the database row (&$row), but

Page 61

PUBLIC
KNOW
LEDGE

Name

ProofreaderAction::s
electProofreader

ProofreaderAction::qgq
ueueForScheduling

ProofreaderAction::p
roofreadEmail

ProofreaderAction::a
uthorProofreadingUnd
erway

ProofreaderAction::p
roofreaderProofreadi
ngUnderway

ProofreaderAction::1
ayoutEditorProofread

Parameters

&Suserld,
&Sarticle,
&$proofAssign
ment

&Sarticle,
&SproofAssign
ment

&$proofAssign
ment,
&Semail,
&SmailType

&$submission,
&SproofAssign
ment

&$submission,
&SproofAssign
ment

&$submission,
&$proofAssign

SIMON FRASER

umvsnsm!libl'ary

Description

before the proofreading assignment is passed
back to the calling function.

Called before OJS designates the supplied user
(s$user1d) as a proofreader of the article
(sSarticle) with the specified proof
assignment (s$proofAssignment). If the hook
registrant wishes to prevent OJS from
performing its usual actions, it should return
true from its callback.

Called when the proofreader with the given
assignment (s$proofAssignment) queues the
supplied article for scheduling (s$article). If
the hook registrant wishes to prevent OJS from
performing its usual actions, it should return
true from its callback.

Called before OJS sends a proofreader email of
the specified s«$mailType (e.g.
PROOFREAD_LAYOUT_COMPLETE) and flags the
appropriate dates given the supplied
&SproofAssignment.

Called before OJS flags an author's
proofreading assignment
(s$proofAssignment) as underway for the
article s Ssubmission. If the hook registrant
wishes to prevent OJS from flagging the
assignment as underway;, it should return true
from its callback.

Called before OJS flags a proofreader's
proofreading assignment
(s$proofAssignment) as underway for the
article s Ssubmission. If the hook registrant
wishes to prevent OJS from flagging the
assignment as underway;, it should return true
from its callback.

Called before OJS flags a layout editor's

Page 62

PUBLIC SIMON FRASER I 3

KNOW % lib ry

KNOW universitYl10lA
Name Parameters Description

ingUnderway ment

proofreading assignment

(¢$proofAssignment) as underway for the
article s $submission. If the hook registrant
wishes to prevent OJS from flagging the
assignment as underway, it should return true
from its callback.

ProofreaderAction::d &S$submission,

own Loadpraofeaderts | s4eileTd, Called when the proofreader wishes to

le s$revision, download an article file (sSarticle,
&ScanDownload . ..
, &Sresult &$fileld, «Srevision) after OJS has

determined whether or not the proofreader has
access to that file (modifiable boolean flag
&ScanDownload) but before the download
itself begins. If the hook registrant wishes to
override OJS's default download behavior, it
should pass a success boolean into s$result
and return true from the callback function.

ProofreaderAction::v | &$Sarticle
iewProofreadComments

Called when the proofreader requests the
proofreading comments for the article
sSarticle. If the hook registrant wishes to
prevent OJS from instantiating and displaying
the comment form, it should return true from
the callback function.

ProofreaderAction::p &Sarticle,

ootnrootrendcomenty ceorei feoren Called when the proofreader attempts to post a
t proofreading comment on the article
sSarticle. If the hook registrant wishes to
prevent OJS from recording the supplied
comment, it should return true from the
callback function.

ProofreaderAction::v &S$Sarticle
iewLayoutComments

Called when the proofreader requests the
layout comments for the article sSarticle. If
the hook registrant wishes to prevent OJS from
instantiating and displaying the comment form,
it should return true from the callback
function.

ProofreaderAction::p &S$Sarticle,
ostLayoutComment &$emailCommen

Called when the proofreader attempts to post a

Page 63

PUBLIC
KNOW
LEDGE

Name

ProofreaderSubmissio
nDAO: :_returnProofre
aderSubmissionFromRo
w

ReviewAssignmentDAO:
:_returnReviewAssign
mentFromRow

Parameters

t

&S$submission,
&Srow

&SreviewAssig
nment, &Srow

ez library

Description

layout comment on the article s$article. If
the hook registrant wishes to prevent OJS from
recording the supplied comment, it should
return true from the callback function.

Called after ProofreaderSubmissionDAO
builds a ProofreaderSubmission
(s$submission) object from the database row
(&$row), but before the submission is passed
back to the calling function.

Called after ReviewAssignmentDAO builds a
ReviewAssignment (&$reviewAssignment)
object from the database row (&$row), but
before the review assignment is passed back to
the calling function.

ReviewerAction::conf
irmReview

ReviewerAction: :reco
rdRecommendation

ReviewerAction::uplo
adReviewFile

ReviewerAction::dele
teReviewerVersion

ReviewerAction::view
PeerReviewComments

&SreviewerSub
mission,
&Semail,
&$decline

&SreviewerSub
mission,
&Semail,
&S$recommendat
ion

&SreviewAssig
nment

&$reviewAssig
nment,
&$fileld,
&Srevision

&Suser,
&Sarticle,
&SreviewId

Called before OJS records a reviewer's
accepted/declined status (s¢$decline) on the
supplied «$reviewAssignment and sends the
editor the email ssemail (if enabled).

Called before OJS records a reviewer's
recommendation (s&Srecommendation) on the
supplied s&$reviewAssignment and sends the
editor the email &$email (if enabled).

Called before OJS updates the review file for
the given s¢SreviewAssignment with the
uploaded file.

Called before OJS deletes the supplied reviewer
file (sSreviewAssignment, &$fileld,
&$version). If the hook registrant wishes to
prevent OJS from deleting, it should return
true from its callback.

Called before OJS displays the peer review
comments to the reviewer (&$user) for the
given article (¢$article) and review ID
(s$reviewId). If the hook registrant wishes to

Page 64

PUBLIC SIMON FRASER I 3
KNOW &) ry
KNOW <, UNIVErsiTY11DIA
Name Parameters Description
prevent OJS from displaying the reviews, it
should return true from its callback.
FeviewerAction: ipost | &suser, Called before records a new comment on the
eerReviewComment &Sarticle,) X R
ssreviewld, given review ID (s¢$reviewId) by the reviewer

&SemailCommen .

N (sSuser) on an article (ssarticle). If the
hook registrant wishes to prevent OJS from
recording the comment, it should return true
from its callback.

Reviewerhction: :down) ssarticle, Called when the reviewer wishes to download
oadReviewerFile &$fileld, . ;

&grevision, an article file (s¢Sarticle, &$fileld,

& D load .

eeresuit &Srevision) after OJS has determined

ReviewerAction::edit
Comment

ReviewerSubmissionDA
O::_returnReviewerSu
bmissionFromRow

SectionEditorAction:
:designateReviewVers
ion

&Sarticle,
&Scomment,
&SreviewId

&SreviewerSub
mission,
&Srow

&$sectionEdit
orSubmission

whether or not the reviewer has access to that
file (modifiable boolean flag &« $canDownload)
but before the download itself begins. If the
hook registrant wishes to override OJS's default
download behavior, it should pass a success
boolean into &$result and return true from
the callback function.

Called before OJS instantiates and displays the
comment edit form for the reviewer for a given
article (¢Sarticle) and comment

(s $comment). If the hook registrant wishes to
prevent OJS from doing this, it should return
true from its callback function.

Called after ReviewerSubmissionDAO builds a
ReviewerSubmission
(¢$reviewerSubmissionDAO) object from the
database row (&$row), but before the review
assignment is passed back to the calling
function.

Called before OJS designates the original file as
the review version for the specified article
(s$sectionEditorsSubmission). To prevent
OJS from performing this task, the hook
registrant should return true from its callback

Page 65

PUBLIC H
KNOW universitvlibrary
Name Parameters Description
function.
S eroohertons Grsectionteit Called before OJS changes the section of the
g$sectionld submission (s&$sectionEditorSubmission) to
the section with the given section ID
(s$section1d). To prevent OJS from
performing this task, the hook registrant should
return true from its callback function.
sectionpaitovherion: iisect onid'® Called before OJS records a decision
s$editorbecis (gSeditorDecision) for a submission
o (s$sectionEditorsSubmission). To prevent
OJS from performing this task, the hook
registrant should return true from its callback
function.
ol torhction: Grsest ontel® Called before OJS creates a new review
ssreviewerid assignment for the specified reviewer
(¢SreviewerId) on a submission
(s$sectionEditorsSubmission). To prevent
OJS from performing this task, the hook
registrant should return true from its callback
function.
S onBaltorhetion: Grsest onilt Called before OJS clears a review
s$reviewnssig (&$reviewAssignment) on a submission
ament (sSsectionEditorSubmission). To prevent
OJS from performing this task, the hook
registrant should return true from its callback.
it e ontehy Called before OJS flags the notification of a
ssreviewhssig reviewer with a pending review
22:2211 (sSreviewAssignment) on a submission
(s$sectionEditorSubmission), sending the
associated reviewer request email &$email (if
enabled).
Seoriothaiiovherion: fisect onldlt Called before OJS cancels a review
s$reviewdssig (&SreviewAssignment) on a submission
2?2;2;1 (s$sectionEditorSubmission), sending the

associated cancellation email (s$email) if

Page 66

PUBLIC SIMON FRASER | 5
KNOW ry
KNOW <, UNIVErsiTY11DIA
Name Parameters Description
enabled.
SectionBditorAction: &ssectionBdit (allad before OJS reminds a reviewer of a
:remindReviewer orSubmission,

ssreviewassig pending review assignment

nment, . . : :

sSemail (sSreviewAssignment) on a submission
(s$sectionEditorSubmission), sending the
associated reminder email (&$email).

Sectionmditorfction: &ssectionfdit Called before OJS thanks a reviewer for
ssreviewassig completing their review assignment

nment,

sSemail (&SreviewAssignment) on a submission
(¢$sectionEditorSubmission), also sending
the email &$email (if enabled).

sectionnditoraction: soreviewrssid Called before OJS records a quality rating

&zreviewer, (sSquality) for a reviewer (sSreviewer) on a

&Squality
review assignment (s$reviewAssignment). To
prevent OJS from recording the rating, the
hook registrant should return true from its
callback.

sectionfditoraction: &oreviewhssis Called before OJS records a new visibility
wable ssarticlerile setting (&$viewable) for a reviewer file

, &Sviewable , . . .
(¢SarticleFile) belonging to a review
assignment (&SreviewAssignment). To
prevent OJS from recording the new setting,
the hook registrant should return true from its
callback.

Jectionfaltoraction: &oreviewhssid Called before OJS sets the due date on a

&greviewer, reviewer (sSreviewer)'s review assignment

&$dueDate, ,

& Snumieck s (s¢SreviewAssignment) to &SdueDate. To
prevent OJS from setting the due date, the
hook registrant should return true from its
callback.

SectionEditorAction: &ssectionEdit (allad before OJS records an author
:unsuitableSubmissio orSubmission,
n &$author, (&Sauthor)'s submission

&Semail

(s$sectionEditorSubmission) as unsuitable,
sending sSemail (if enabled).

Page 67

PUBLIC SIMON FRASER | 5
KNOW ry
KNOW <, UNIVErsiTY11DIA
Name Parameters Description
SectionEditorAction: &ssectionEdit (allad hefore OJS sends an author notification
:notifyAuthor orSubmission, K
&$author, email (s$email) to an author (sSauthor)
&$email . .« .
regarding a submission
(¢$sectionEditorSubmission).
SectionEditorAction: &sreviewhssig (alled before a reviewer recommendation
:setReviewerRecommen nment, . .
dation s$reviewer, (s$recommendation) is recorded on a review
&Srecommendat .))
ion, assignment (s$reviewAssignment) for the
ssacceptoptio reviewer s$reviewer. To prevent the
recommendation from being recorded, the hook
registrant should return true from its hook
callback.
sectionEditorAction: &9sectionfdit Called before OJS sets the copyeditor file for
:setCopyeditFile orSubmission, L
s$fileld, the submission ¢$sectionEditorSubmission
&$revision , . . . L.
to $fileld with revision s$revision. To
prevent this change from taking place, the hook
registrant should return true from its callback.
SectionBditorAction: &ssectionBdit (allad before OJS resubmits a file (s$fileId
:resubmitFile orSubmission, . T
&zfil?mr and s$revision) belonging to submission
&Srevision .
&$sectionEditorSubmission for review. To
prevent this action from taking place, the hook
registrant should return true from its callback.
sectionEditorAction: &ysectionfdit (Cglled before OJS designates the user with ID
:selectCopyeditor orSubmission, X
s$copyeditorl gScopyeditorId as copyeditor for the
d ..
submission &$sectionEditorSubmission. To
prevent this from taking place, the hook
registrant should return true from its callback.
SectionEditorAction: &$sectionEdit L] :
Tmotifycopyeditor ovoupmiceion, Galled before OJS not1f1e§ the copygduor
&zcopyeditor, &Scopyeditor about their copyediting
&Semail . o e
assignment for submission
&$sectionEditorSubmission, sending
s$email if enabled.
SectionEditorAction: &$sectionEdit : : :
mitimteCopredit ereatmiseion Galled before flagging the beginning of an

editor copyediting stage on submission
&$sectionEditorSubmission. To prevent this
from taking place, the hook registrant should

Page 68

PUBLIC
KNOW
LEDGE

Name

Parameters

ez library

Description

return true from its callback.

SectionEditorAction: &SsectionEdit .
e hankCopyeditor orourmicaion, Called before OJS thanks a copyedltor
&zcopyeditor, (¢$copyeditor) for contributing to the
&Semail ..
submission &$sectionEditorSubmission,
sending the email &semail if enabled.
sectionEditorAction: &ssectionfdit called before OJS flags notification of an
:notifyAuthorCopyedi | orSubmission, . .
t &2author, author (s¢$author) of their copyediting
&Semail . ..
assignment on a submission
(¢$sectionEditorSubmission), sending the
email s¢$email if enabled.
?jﬁtionEditorACtio?‘ e¥sectionidit - Called before OJS records thanking an author
:thankAuthorCopyedit orSubmission, . o X K
&zauthor, (¢$author) for their copyediting contribution
&Semail .
to s$sectionEditorSubmission, sending
&Semail if enabled.
SectionEditorAction: | &$sectionEdit LYol
:notifyFinalCopyedit orSubmission, Called]?efore OJS records nOtlfylng the
s$copyeditor, copyeditor (&$copyeditor) of their final
&Semail
copyediting stage for the submission
&$sectionEditorSubmission, sending
&$email if enabled.
SectionEditorAction: &SsectionEdit .
:thankFinalCopyedit | orSubmission, Caued]?efore OJS records thanklng 'a .
&zcopyeditor, copyeditor (&$copyeditor) for their final-
&Semail
round copyediting contribution to submission
&$sectionEditorSubmission, sending
&$email if enabled.
SectionEditorAction: &ssectionBdit ' (qllad before OJS stores a new review version
:uploadReviewVersion |orSubmission o
for the submission
&$sectionEditorSubmission. To prevent OJS
from doing this, the hook registrant should
return true from its callback.
SectionEditorAction: | &$sectionEdit

:uploadEditorVersion | orSubmission

Called before OJS stores a new editing version
for the submission
&$sectionEditorSubmission. To prevent OJS
from doing this, the hook registrant should
return true from its callback.

Page 69

PUBLIC
KNOW
LEDGE

Name

SectionEditorAction:
:uploadCopyeditVersi

on

SectionEditorAction:
:completeCopyedit

SectionEditorAction:
:completeFinalCopyed

it

SectionEditorAction:
rarchiveSubmission

SectionkEditorAction:

:restoreToQueue

SectionEditorAction:

:updateSection

SectionEditorAction:
:uploadLayoutVersion

Parameters

&$sectionEdit
orSubmission

&S$sectionkEdit
orSubmission

&$sectionkEdit
orSubmission

&$sectionkEdit
orSubmission

&$sectionEdit
orSubmission

&$submission,
&$sectionId

&$submission,
&$layoutAssig
nment

25 SIMON FRASER | 3
umvsnsn'vllbl'ary

Description

Called before OJS stores a new copyediting
version for the submission
&$sectionEditorSubmission. To prevent OJS
from doing this, the hook registrant should
return true from its callback.

Called before OJS records a completion date for
copyediting on a submission
(¢$sectionEditorSubmission) performed for
the editor (when the use of copyeditors is
disabled). To prevent OJS from recording this,
the hook registrant should return true from its
callback.

Called before OJS records a completion date for
the final copyediting stage on a submission
(¢$sectionEditorSubmission) performed for
the editor (when the use of copyeditors is
disabled). To prevent OJS from recording this,
the hook registrant should return true from its
callback.

Called before OJS archives a submission
(sSsectionEditorSubmission). If this action
should not be performed, the hook registrant
should return true from its callback.

Called before OJS restores a submission
(&$sectionEditorSubmission) from the archives
into an active queue. If this action should not
be performed, the hook registrant should return
true from its callback.

Called before OJS moves the article
&$submission into the section with ID
&$sectionId. To prevent OJS from performing
this action, the hook registrant should return
true from its callback.

Called before OJS stores a new layout version
of the submission &$submission with the

Page 70

PUBLIC
KNOW
LEDGE

Name

SectionEditorAction:
rassignLayoutEditor

SectionEditorAction:
:notifyLayoutEditor

SectionEditorAction:
:thankLayoutEditor

SectionEditorAction:
:deleteArticleFile

SectionkEditorAction:
raddSubmissionNote

SectionEditorAction:
:removeSubmissionNot
e

SectionEditorAction:
:updateSubmissionNot

Parameters

&S$submission,
&$editorId

&Ssubmission,
&$layoutEdito
r,
&$layoutAssig
nment,
&Semail

&$Ssubmission,
&$layoutEdito
r,
&$layoutAssig
nment,
&$email

&$submission,
&$fileld,
&Srevision

&Sarticleld,
&$SarticleNote

&Sarticleld,
&Snoteld,
&S$fileld

&Sarticleld,
&SarticleNote

[fOBF]

=71 SIMON FRASER

umvsnsm!libl'ary

Description

given layout assignment
&$layoutAssignment. To prevent OJS from
performing this action, the hook registrant
should return true from its callback.

Called before OJS assigns the layout editor with
user ID s$editorId to submission
&$submission. To prevent OJS from
performing this action, the hook registrant
should return true from its callback.

Called before OJS flags notification of the
layout editor s$layoutEditor for the
submission &$submission, sending the email
s$email if enabled.

Called before OJS records thanking the layout
editor &$layoutEditor for their work on the
submission &$submission, sending the email
&Semail if enabled.

Called before OJS deletes an article file
(s$fileId, &Srevision) for the submission
&$submission. To prevent OJS from
performing this action, the hook registrant
should return true from its callback.

Called before OJS adds a submission note
(sSarticleNote) to a submission with article
ID s$article1d. To prevent OJS from
performing this action, the hook registrant
should return true from its callback.

Called before OJS removes the submission note
(s$noteId) and, if present, the associated file
(¢$file1d) from the submission with article ID
sSarticleld. To prevent OJS from performing
this action, the hook registrant should return
true from its callback.

Called before OJS saves the changes to a

Page 71

PUBLIC H
KNOW universitvlibrary
Name Parameters Description

© submission note on the article with ID
&Sarticleld, already performed on the object
&SarticleNote but not committed to
database. The new attached file, if one has
been uploaded, has not been stored yet. To
prevent OJS from storing the changes, the hook
registrant should return true from its callback.

SectionBditorAction: &sarticleld (alled before OJS removes all submission notes

:clearAllSubmissionN

otes and, if present, the associated files from the
submission with article ID s$articleId. To
prevent OJS from performing this action, the
hook registrant should return true from its
callback.

SectionBdltorherion: sfarticle Called before OJS displays the peer review

nts comments to the editor or section editor for the
given article (s¢$article) and review ID
(¢SreviewId). If the hook registrant wishes to
prevent OJS from displaying the reviews, it
should return true from its callback.

SectionEditorAction: &sarticle, Called before OJS records a new comment on

:postPeerReviewComme | &S$Sreviewld,

nt ssemailcommen the given review ID (s$reviewId) by the editor

- or section editor on an article (sSarticle). If

the hook registrant wishes to prevent OJS from
recording the comment, it should return true
from its callback.

SectionEditorhction: |&farticle Called when the Editor or Section Editor

omments requests the editor decision comments for the
article ssarticle. If the hook registrant wishes
to prevent OJS from instantiating and
displaying the comment form, it should return
true from the callback function.

SectionEditorAction: j&farticle, Called before OJS records a new editor

:postEditorDecisionC | &SemailCommen

omment

t

comment on the submission ¢$article. To
prevent OJS from performing this action, the
hook callback should return true.

Page 72

PUBLIC SIMON FRASER || 3

KNOW % lib ry

KNOW <, UNIVErsiTY11DIA

Name Parameters Description

SectionBditorAction: &ssectionBdit (allad before OJS emails the author an editor

cemailEditorDecision | orSubmission, . O

Comment s$send decision comment on a submission
(&$sectionEditorDecision).

SectionEditorAction: &S$Sarticle,

:blindCcReviewsToRev | &SreviewAssig Called befOI'e OJS anonymously sends the

iewers nrgents, reviews (&$reviewAssignments) email

& il . .

e (s$email) to reviewers for the article
&Sarticle.

SectionEditorAction: &3article Called when the editor or section editor

:viewCopyeditComment .

s requests the copyediting comments for the
article ssarticle. If the hook registrant wishes
to prevent OJS from instantiating and
displaying the comment form, it should return
true from the callback function.

SectionEditorAction: &sarticle, Called when the editor or section editor

:postCopyeditComment | &$emailCommen .

t attempts to post a copyediting comment on the
article s Sarticle. If the hook registrant wishes
to prevent OJS from recording the supplied
comment, it should return true from the
callback function.

SectionEditorAction: &sarticle Called when the section editor or editor

:viewLayoutComments .
requests the layout comments for the article
sSarticle. If the hook registrant wishes to
prevent OJS from instantiating and displaying
the comment form, it should return true from
the callback function.

SectionEditorAction: é&sarticle, Called when the section editor or editor

:postLayoutComment &$emailCommen

t attempts to post a layout comment on the
article ssarticle. If the hook registrant wishes
to prevent OJS from recording the supplied
comment, it should return true from the
callback function.

SectionEditorAction: &S$article

:viewProofreadCommen
ts

Called when the editor or section editor
requests the proofreading comments for the
article ssarticle. If the hook registrant wishes
to prevent OJS from instantiating and

Page 73

PUBLIC SIMON FRASER || 3

KNOW

KNOW <, UNIVErsiTY11DIA

Name Parameters Description
displaying the comment form, it should return
true from the callback function.

SectionEditorAction: é&sarticle, Called when the editor or section editor

:postProofreadCommen | &$emailCommen)

t t attempts to post a proofreading comment on
the article s$article. If the hook registrant
wishes to prevent OJS from recording the
supplied comment, it should return true from
the callback function.

SectionEditorAction: &sreviewAssig (alled before OJS records the editor's

racceptReviewForRevi nment, X X

ewer s$reviewer acceptance of a review assignment
(sSreviewAssignment) on behalf of a
reviewer (s$reviewer). To prevent OJS from
performing this action, the hook registrant
should return true from its callback.

SectioniditorAction: &ireviewAssig (glled before OJS stores an editor's review

:uploadReviewForRevi nment, R .

ewer s$reviewer upload for a review assignment
(s$reviewAssignment) on behalf of a
reviewer (s$reviewer). To prevent OJS from
performing this action, the hook registrant
should return true from its callback.

SectionEditorSubmiss &3sectionEdit (Oallad after SectionEditorSubmissionDAO

ionDAO: :_returnSecti | orSubmission, K

onEditorSubmissionFr |&Srow builds a SsectionEditorSubmission

omRow

SectionEditorSubmiss
ionDAO: :_returnRevie
werUserFromRow

CurrencyDAO: :_return
CurrencyFromRow

&Suser, &Srow

&S$currency,
&Srow

(¢$sectionEditorSubmission) object from
the database row (&$row), but before the
submission is passed back to the calling
function.

Called after sectionEditorSubmissionDAO
builds a User (s$user) object from the
database row (&$row), but before the
submission is passed back to the calling
function. The use of this hook is not
recommended as it may be removed in the
future.

Called after CurrencyDAO builds a Currency
(s$currency) object from the database row

Page 74

PUBLIC SIMON FRASER I 3
KNOW % lib ry
KNOW universitYl10lA
Name Parameters Description
(s $row), but before the currency is passed back
to the calling function.
SubscriptionDAO::_re &$subscriptio

turnSubscriptionFrom
Row

SubscriptionTypeDAO:
:_returnSubscription
TypeFromRow

TemplateManager: :dis

play

UserDAO: :_returnUser
FromRow

n, &Srow

&$subscriptio
nType, &Srow

&StemplateMgr
, &Stemplate,
&$sendContent
Type,
&$charset

&Suser, &Srow

Called after subscriptionDA0O builds a
Subscription (&$subscription) object from
the database row (s&$row), but before the
subscription is passed back to the calling
function.

Called after subscriptionTypeDA0 builds a
SubscriptionType (&$subscriptionType)
object from the database row (&$row), but
before the subscription type is passed back to
the calling function.

Called before the template manager
(s$templateMgr) sends the content type
header with the given content type
(s$sendContentType) and character set
(s$charset) and displays a template
(s$template). To prevent OJS from
performing this action, the hook registrant
should return true from its callback.

Called after userDa0 builds a User (sSuser)
object from the database row (&$row), but
before the user is passed back to the calling
function.

SIOUPDAO: :_returnGro &5group, Called after GroupDa0 builds a Group

pFromRow &Srow .
(& $group) object from the database row
(&«$row), but before the group is passed back to
the calling function.

G Memb hipDAO:: &$ b hip, . :

eturnMemborFromRow | ssrow T Called after GroupMembershipDAO buﬂ(;ls a
GroupMembership (&$membership) object
from the database row (s$row), but before the
group membership is passed back to the calling
function.

Templates: :About::In &S$params, : .

o peopie corempiareng: Called at the end of the bulleted list in the

, &Soutput

Page 75

PUBLIC
KNOW
LEDGE

Name

Parameters

25 SIMON FRASER | 3
umvsnsn'vllbl'ary

Description

People section of the About page, within the
<ul class="plain”>... tag.

remplates: :About::In | &fparams, Called at the end of the bulleted list in the
ex::Policies &$templateMgr o X o
, &Soutput Policies section of the About page, within the
<ul class="plain”>... tag.
remplates: :About::in &sparans, Called at the end of the bulleted list in the
ex::Submissions &StemplateMgr L.) T
, &$output Submissions section of the About page, within
the <ul class="plain”>... tag.
Templates::About::In &$params,

dex::0ther

Templates::Admin::In
dex::SiteManagement

Templates::Admin::In
dex::AdminFunctions

&StemplateMgr
, &Soutput

&S$params,
&StemplateMgr
, &Soutput

&S$params,
&StemplateMgr
, &Soutput

Called at the end of the bulleted list in the
Other section of the About page, within the <ul
class="plain”>... tag.

Called at the end of the bulleted list in the Site
Management section of the site administration
page, within the <ul class="plain”>...
tag.

Called at the end of the bulleted list in the
Admin Functions section of the site

administration page, within the <ul
class="plain”>... tag.

Templates::Editor::I

ndex: :Submissions

Templates::Editor:

ndex::Issues

: I

Templates::Manager::
Index: :ManagementPag

es

&Sparams,
&StemplateMgr
, &Soutput

&Sparams,
&$templateMgr
, &Soutput

&$params,
&StemplateMgr
, &Soutput

Called at the end of the bulleted list in the
Submissions section of the editor's page, within
the <ul class="plain”>... tag.

Called at the end of the bulleted list in the
Issues section of the editor's page, within the
<ul class="plain”>... tag.

Called at the end of the bulleted list in the
Management Pages section of the journal
manager's page, within the <ul
class="plain”>... tag.

Templates::Manager::

Index::Users

Templates::Manager::

Index: :Roles

&Sparams,
&StemplateMgr
, &Soutput

&Sparams,
&StemplateMgr
, &Soutput

Called at the end of the bulleted list in the
Users section of the journal manager's page,
within the <ul class="plain”>... tag.

Called at the end of the bulleted list in the

Page 76

PUBLIC
KNOW
LEDGE

Name

Parameters

[fOBF]
P[]

e SIMON FRASER |}
umvsnsn'vllbl'ary
Description

Roles section of the journal manager's page,
within the <ul class="plain”>... tag.

Templates: :User:

ex::3ite

Templates::User:

ex::Journal

:Ind

:Ind

&Sparams,
&StemplateMgr
, &Soutput

&Sparams,
&StemplateMgr
, &Soutput

Called after the site management link is
displayed (if applicable) in the user home,
within the <ul class="plain”>... tag.

Called at the end of the bulleted list displaying
the roles for each journal in the user home,
within the <ul class="plain”>... tag.

Templates::Admin::In

dex: :MyAccount

&S$params,
&StemplateMgr
, &Soutput

Called at the end of the bulleted list in the My
Account section of the user home, within the
<ul class="plain”>... tag.

Page 77

PUBLIC SIMON FRASER | 3
KNOW umvsnsn'vllbl'ary
Translating OJS

To add support for other languages, XML files in the following directories must be
translated and placed in an appropriately named directory (using ISO locale
codes, e.g. fr_FR, is recommended):

® locale/en_uUs: This directory contains the main locale file with the majority
of localized OJS text.

® dbscripts/xml/data/locale/en_US: This directory contains localized
database data, such as email templates.

® help/en_us: This directory contains the help files for OJS.

® registry/locale/en_us: This directory contains additional localized

information such as a country list.

rt/en_us: This directory contains the Reading Tools.

® plugins/[plugin category]/[plugin name]/locale, where applicable:
These directories contain plugin-specific locale strings.

The only critical files that need translation for the system to function properly are
found in locale/en_US, dbscripts/xml/data/locale/en_US, and
registry/locale/en_US.

New locales must also be added to the file registry/locales.xml, after which
they can be installed in the system through the site administration web interface.

Translations can be contributed back to PKP for distribution with future releases
of OJS.

Page 78

PUBLIC SIMON FRASER | 3
KNOW umvsnsn'vllbl'ary
Special Thanks

The Public Knowledge Project wishes to acknowledge the contributions of the
following community members:

® Ramon Fonseca: Portuguese (pt_BR) translation
® Sergio Ruiz Pérez: Spanish (es_ES) translation

Page 79

PUBLIC
KNOW

LEDGE

Obtaining More Information

o
5

SIMON FRASER I =
umvsnsn'vllbl'ary

For more information, see the PKP web site at http://pkp.sfu.ca. There is an OJS
support forum available at http://pkp.sfu.ca/support/forum; this is the preferred
method of contacting the OJS team. Please be sure to search the forum archives to

see if your question has already been answered.

If you have a bug to report, see the bug tracking system at

http://pkp.sfu.ca/bugzilla.

The team can be reached by email at pkp-support@sfu.ca.

Page 80

mailto:pkp-support@sfu.ca
http://pkp.sfu.ca/bugzilla
http://pkp.sfu.ca/support/forum
http://pkp.sfu.ca/

	Introduction
	About the Public Knowledge Project
	About Open Journal Systems
	About This Document
	Conventions

	Technologies
	Design Overview
	Conventions
	General
	User Interface
	PHP Code
	Database
	Security

	Introduction
	File Structure
	Request Handling
	A Note on URLs
	Request Handling Example
	Locating Request Handling Code

	Database Design
	Class Reference
	Class Hierarchy
	Page Classes
	Introduction

	Action Classes
	Model Classes
	Data Access Objects (DAOs)
	Support Classes
	Sending Email Messages
	Internationalization
	Forms
	Configuration
	Core Classes
	Database Support
	File Management
	Scheduled Tasks
	Security
	Session Management
	Template Support
	Paging Classes
	Plugins

	Common Tasks
	Sending Emails
	Database Interaction with DAOs

	User Interface
	Variables
	Functions & Modifiers

	Plugins
	Objects & Classes
	Sample Plugin
	Loader Stub
	Plugin Object
	Registration Function
	Hook Registration and Callback
	Plugin Management
	Additional Plugin Functionality
	Hook List

	Translating OJS
	Special Thanks
	Obtaining More Information

